1
|
Wang H, Liang J, Yue Q, Li L, Shi Y, Chen G, Li YZ, Bian X, Zhang Y, Zhao G, Ding X. Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity. Microb Cell Fact 2021; 20:86. [PMID: 33882930 PMCID: PMC8058987 DOI: 10.1186/s12934-021-01578-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal. Results The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS. Conclusions These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01578-3.
Collapse
Affiliation(s)
- Huimin Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Junheng Liang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Qianwen Yue
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yan Shi
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Xiaoying Bian
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, People's Republic of China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
2
|
Yue XJ, Cui XW, Zhang Z, Hu WF, Li ZF, Zhang YM, Li YZ. Effects of transcriptional mode on promoter substitution and tandem engineering for the production of epothilones in Myxococcus xanthus. Appl Microbiol Biotechnol 2018; 102:5599-5610. [PMID: 29705958 PMCID: PMC5999154 DOI: 10.1007/s00253-018-9023-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 10/25/2022]
Abstract
Promoter optimization is an economical and effective approach to overexpress heterologous genes and improve the biosynthesis of valuable products. In this study, we swapped the original promoter of the epothilone biosynthetic gene cluster in Myxococcus xanthus with two endogenous strong promoters P pilA and P groEL1 , respectively, which, however, decreased the epothilone production ability. The transcriptional abilities by the two promoters were found to be bloomed in the growth stage but markedly decreased after the growth, whereas the original promoter P epo functioned majorly after the exponential growth stage. Tandem repeat engineering on the original promoter P epo remarkably increased epothilone production. The tandem promoter exerted similar expressional pattern as P epo did in M. xanthus. We demonstrated that differential transcriptional modes markedly affected the efficiency of promoters in controlling the gene expressions for the production of the secondary metabolite epothilones. Our study provides an insight into exploiting powerful promoters to produce valuable secondary metabolites, especially in host with limited known promoters.
Collapse
Affiliation(s)
- Xin-jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xiao-wen Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Wei-feng Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - You-ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| |
Collapse
|
3
|
Li ZF, Zhu LP, Gu JY, Singh RP, Li YZ. Isolation and characterisation of the epothilone gene cluster with flanks from high alkalotolerant strain Sorangium cellulosum (So0157-2). World J Microbiol Biotechnol 2017; 33:137. [PMID: 28585173 DOI: 10.1007/s11274-017-2301-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/26/2017] [Indexed: 01/12/2023]
Abstract
Epothilones are cytotoxic macrolactones having auspicious anti-tumorous activities, but merely produced by rare Sorangium strains. Here, we have focused on the epothilone gene cluster from special niche bacterial strain, S. cellulosum So0157-2. Therefore, we have isolated a high pH tolerant S. cellulosum strain So0157-2 and characterized the epothilones gene cluster and its flanks by cosmid/fosmid libraries preparation and sequencing. The assembly spanned 94,459 bp and consisted of 56,019 bp core region. Remarkably, the core as well as upstream 420 bp and downstream 315 bp were highly conserved, while further neighboring regions varied extremely. Transposase traces were identified near the core of clusters, supporting that the transposon-mediated transgenesis is a naturally evolved strategy for the cluster's dissemination. A predicted neighboring esterase gene was identified as a potential epothilone-resistance gene preventing self-toxicity. Novel modification or regulatory genes, a multi-position-cyclo releasing gene and their relationship with corresponding analogs were identified in strain So0157-2. These findings open the door to discover additional, naturally evolved epothilone-related genes for significant applications in industrial as well as clinical sector.
Collapse
Affiliation(s)
- Zhi-Feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Li-Ping Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jing-Yan Gu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Raghvendra Pratap Singh
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
4
|
Zhu LP, Li ZF, Sun X, Li SG, Li YZ. Characteristics and activity analysis of epothilone operon promoters from Sorangium cellulosum strains in Escherichia coli. Appl Microbiol Biotechnol 2013; 97:6857-66. [PMID: 23549746 DOI: 10.1007/s00253-013-4830-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/26/2022]
Abstract
The epothilones, compounds with anticancer mechanisms similar to that of paclitaxel (Taxol), are produced by strains of the myxobacterium Sorangium cellulosum, and the gene cluster responsible for epothilone biosynthesis is organised as a large operon. In this work, we showed that the 440-bp promoter regions of the operons from eight S. cellulosum strains have 94.27 % DNA sequence identity and 50 % variability in promoter activity in Escherichia coli. A primer extension analysis revealed two transcriptional start sites (TSSs) at 246 (TSS1) and 193 bp (TSS2) upstream of the translation start site (TLS), respectively. Promoter truncation determined that the basal promoter from the So0157-2 strain is located within a 264-bp region containing weak promoter activity; whereas in the 38-bp region upstream, the 264-bp promoter was required for the strong promoter activity, which was dramatically increased by 11-fold in average. There was a conserved stem-loop structure between TSS2 and the TLS, which was identified in E. coli as a negative regulatory element. In addition, the upstream non-conserved 357-bp non-coding region contributes to the promoter activity, increasing it by 1.5-fold. In conclusion, the expression of the epothilone operon non-coding region in E. coli is regulated by a double promoter (with -35 and -10 regions and two distinct TSSs), a stem-loop structure, and a distal non-coding region.
Collapse
Affiliation(s)
- Li-Ping Zhu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | |
Collapse
|