1
|
Rathore AS, Kumar N, Choudhury S, Mehta NK, Raghava GPS. Prediction of hemolytic peptides and their hemolytic concentration. Commun Biol 2025; 8:176. [PMID: 39905233 PMCID: PMC11794569 DOI: 10.1038/s42003-025-07615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Peptide-based drugs often fail in clinical trials due to their toxicity or hemolytic activity against red blood cells (RBCs). Existing methods predict hemolytic peptides but not the concentration (HC50) required to lyse 50% of RBCs. This study develops classification and regression models to identify and quantify hemolytic activity. These models train on 1926 peptides with experimentally determined HC50 against mammalian RBCs. Analysis indicates that hydrophobic and positively charged residues were associated with higher hemolytic activity. Among classification models, including machine learning (ML), quantum ML, and protein language models, a hybrid model combining random forest (RF) and a motif-based approach achieves the highest area under the receiver operating characteristic curve (AUROC) of 0.921. Regression models achieve a Pearson correlation coefficient (R) of 0.739 and a coefficient of determination (R²) of 0.543. These models outperform existing methods and are implemented in HemoPI2, a web-based platform and standalone software for designing peptides with desired HC50 values ( http://webs.iiitd.edu.in/raghava/hemopi2/ ).
Collapse
Affiliation(s)
- Anand Singh Rathore
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Nishant Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Naman Kumar Mehta
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
2
|
Klubthawee N, Wongchai M, Aunpad R. The bactericidal and antibiofilm effects of a lysine-substituted hybrid peptide, CM-10K14K, on biofilm-forming Staphylococcus epidermidis. Sci Rep 2023; 13:22262. [PMID: 38097636 PMCID: PMC10721899 DOI: 10.1038/s41598-023-49302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
Staphylococci, notably biofilm-forming Staphylococcus epidermidis, have been recognized as global nosocomial pathogens in medical device-related infections. Their potential to attach to and form biofilm on indwelling catheters are significant factors impeding conventional treatment. Due to their extensive antimicrobial and antibiofilm actions, antimicrobial peptides (AMPs) have attracted interest as promising alternative compounds for curing difficult-to-treat, biofilm-forming bacterial infections. Cecropin A-melittin or CM, a well-known hybrid peptide, exhibits broad-spectrum antimicrobial activity, however it also possesses high toxicity. In the current study, a series of hybrid CM derivatives was designed using an amino acid substitution strategy to explore potential antibacterial and antibiofilm peptides with low toxicity. Among the derivatives, CM-10K14K showed the least hemolysis along with potent antibacterial activity against biofilm-forming S. epidermidis (MICs = 3.91 μg/mL) and rapid killing after 15 min exposure (MBCs = 7.81 μg/mL). It can prevent the formation of S. epidermidis biofilm and also exhibited a dose-dependent eradication activity on mature or established S. epidermidis biofilm. In addition, it decreased the development of biofilm by surviving bacteria, and formation of biofilm on the surface of CM-10K14K-impregnated catheters. Released CM-10K14K decreased planktonic bacterial growth and inhibited biofilm formation by S. epidermidis in a dose-dependent manner for 6 and 24 h post-exposure. Impregnation of CM-10K14K prevented bacterial attachment on catheters and thus decreased formation of extensive biofilms. SEM images supported the antibiofilm activity of CM-10K14K. Flow cytometry analysis and TEM images demonstrated a membrane-active mechanism of CM-10K14K, inducing depolarization and permeabilization, and subsequent membrane rupture leading to cell death. The presence of an interaction with bacterial DNA was verified by gel retardation assay. These antibacterial and antibiofilm activities of CM-10K14K suggest its potential application to urinary catheters for prevention of biofilm-forming colonization or for treatment of medical devices infected with S. epidermidis.
Collapse
Affiliation(s)
- Natthaporn Klubthawee
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Mathira Wongchai
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Ratchaneewan Aunpad
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
3
|
Huang H, Lee WY, Zou H, Li H, Zhang S, Li H, Lin J. Antimicrobial peptides in Dendrobium officinale: Genomic parameters, peptide structures, and gene expression patterns. THE PLANT GENOME 2023; 16:e20348. [PMID: 37194434 DOI: 10.1002/tpg2.20348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/18/2023]
Abstract
A weak codon usage bias was found in Dendrobium catenatum (D. officiale) antimicrobial peptides (AMPs), after the analysis of relative synonymous codon usage, GC contents, and the effective number of codons. The codon usage preference was mainly influenced by natural selection pressure. The self-optimized prediction method and SWISS-MODEL were applied for peptide structural and domain analyses, and some typical antimicrobial domains were found in D. officinale AMP amino sequences, such as knot1 domain, gibberellins-stimulated domain, cupin_1 domain, defensin_like domain, and SLR1-BP (S locus-related glycoprotein 1 binding pollen coat protein) domain. To investigate the AMPs gene expression pattern, abiotic stresses, such as salt stress, drought stress, salicylic acid (SA), and methyl jasmonate (JA), were applied and the gene expression levels were detected by the real-time fluorescent quantitative polymerase chain reaction. Results showed that, even though the basic AMPs gene expressions were low, some AMPs can still be induced by salt dress, while the drought dress did not show the same impact. The SA and JA signaling pathways might be involved in most of the AMPs expressions. The natural selection of the D. officinale AMPs and thus forming diverse types of AMPs enhanced the plant's innate immunity and disease resistance capability, which would lead to a better understanding of the molecular mechanism for D. officinale adapting to the environment. The finding that salt stress, SA, and JA signaling pathways can induce AMP expression lays a foundation for the further development and functional verification of D. officinale AMPs.
Collapse
Affiliation(s)
- Huiming Huang
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian, China
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| | - Hui Zou
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian, China
| | - Haiming Li
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian, China
| | - Shuhe Zhang
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian, China
| | - Heping Li
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian, China
| | - Jiangbo Lin
- Institute of Subtropical Agriculture, Fujian Academy of Agricultural Sciences, Zhangzhou, Fujian, China
| |
Collapse
|
4
|
Popitool K, Wataradee S, Wichai T, Noitang S, Ajariyakhajorn K, Charoenrat T, Boonyaratanakornkit V, Sooksai S. Potential of Pm11 antimicrobial peptide against bovine mastitis pathogens. Am J Vet Res 2022; 84:ajvr.22.06.0096. [PMID: 36480332 DOI: 10.2460/ajvr.22.06.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate an alternative treatment for bovine mastitis by using Pm11 antimicrobial peptide. SAMPLE 5 bovine mastitis pathogens that were previously isolated from cows affected by either clinical or subclinical mastitis. PROCEDURES The current study introduces Pm11 antimicrobial peptide as an alternative treatment for bovine mastitis. The antibacterial activity of Pm11 was tested against Escherichia coli strain SCM1249, Klebsiella spp strain SCM1282, Staphylococcus aureus strain CM967, Streptococcus agalactiae strain SCM1084, and Streptococcus uberis strain SCM1310 using minimum bactericidal concentrations (MBCs) and time-kill kinetics. The pathogens' morphological changes were demonstrated using a scanning electron microscope (SEM). The cytotoxicity of Pm11 was assessed using the minimum hemolytic concentration assay. RESULTS MBCs ranged from 2.5 to 10 μM and IC50 ranged from 0.32 to 2.07 μM. Time-kill kinetics at MBC demonstrated that Pm11 reduced viable cell counts of S agalactiae strain SCM1084 and S uberis strain SCM1310 from 105 to 0 CFU/mL within 1 h. E coli strain SCM1249 and S aureus strain CM967 were reduced from 105 to 0 CFU/mL within 4 h. The average Pm11-induced hemolytic activity was < 10% for all Pm11 concentrations tested except at the maximum concentration tested (160 μM: 10.19 ± 2.29%). Based on SEM, Pm11 induced morphological and cellular changes in S aureus and E coli. CLINICAL RELEVANCE Pm11 antimicrobial peptide demonstrated in vitro antibacterial activity against the common bovine mastitis pathogens E coli, S aureus, S agalactiae, and S uberis, except Klebsiella spp, and should be further investigated in vivo.
Collapse
Affiliation(s)
- Kwantida Popitool
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sirirat Wataradee
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanaporn Wichai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sajee Noitang
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Kittisak Ajariyakhajorn
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, Thailand
| | - Viroj Boonyaratanakornkit
- Department of Clinical Chemistry and Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Ajayakumar N, Narayanan P, Anitha AK, R MK, Kumar S. Membrane disruptive action of cationic anti-bacterial peptide B1CTcu3. Chembiochem 2022; 23:e202200239. [PMID: 35713298 DOI: 10.1002/cbic.202200239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Indexed: 11/09/2022]
Abstract
A twenty-two-residue peptide Brevinin1 Clinotarsus curtipus-3 (B1CTcu3), identified from the skin secretion of frog Clinotarsus curtipes of the Western Ghats, exhibited a broad range of antibacterial activity against Gram-negative and Gram-positive bacteria, including the methicillin-resistant Staphylococcus aureus (MRSA). It showed anti-biofilm activity even at sub-Minimum Inhibitory Concentration (sub-MIC) against Pseudomonas aeruginosa and Staphylococcus aureus. Analysis of the scanning electron microscopic (SEM) images, confocal images, flow cytometric data and the effect of salt concentration on antibacterial potency suggests that the killing action of the peptide is through the membranolytic process. Single channel electric recording confirmed that the peptide elicited pores on the bacterial cell membrane as it induces a heterogeneous channel in the lipid bilayer. It also showed cytotoxicity against MDA-MB-231 breast cancer cell with IC50 of 25µM. B1CTcu3 peptide could serve as the template for next-generation antibacterial agents, particularly against antibiotic resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Neethu Ajayakumar
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology Lab, RGCB-BIO innovation centre, Kinfra film and video park, Chandavila, kazhakoottam, 695523, trivandrum, INDIA
| | - Pratibha Narayanan
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology Lab, rgcb-BIC Innovation Centre, Kinfra film and video park, Chandavila, Kazhakoottam, 695523, Trivandrum, INDIA
| | - Anju Krishnan Anitha
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology Lab, RGCB-BIC Innovation Centre, Kinfra film and video park, Chandavila, Kazhakoottam, 695523, Trivandrum, INDIA
| | - Mahendran Kozhinjampara R
- Rajiv Gandhi Centre for Biotechnology, Membrane biology lab, RGCB-BIC Innovation centre, Kinfra film and video park, chandavila, kazhakoottam, 695523, rivandrum, INDIA
| | - Santhosh Kumar
- Rajiv Gandhi Centre for Biotechnology, Chemical Biology, Poojappura, 695014, Thiruvananthapuram, INDIA
| |
Collapse
|
6
|
Ramazi S, Mohammadi N, Allahverdi A, Khalili E, Abdolmaleki P. A review on antimicrobial peptides databases and the computational tools. Database (Oxford) 2022; 2022:baac011. [PMID: 35305010 PMCID: PMC9216472 DOI: 10.1093/database/baac011] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial Peptides (AMPs) have been considered as potential alternatives for infection therapeutics since antibiotic resistance has been raised as a global problem. The AMPs are a group of natural peptides that play a crucial role in the immune system in various organisms AMPs have features such as a short length and efficiency against microbes. Importantly, they have represented low toxicity in mammals which makes them potential candidates for peptide-based drugs. Nevertheless, the discovery of AMPs is accompanied by several issues which are associated with labour-intensive and time-consuming wet-lab experiments. During the last decades, numerous studies have been conducted on the investigation of AMPs, either natural or synthetic type, and relevant data are recently available in many databases. Through the advancement of computational methods, a great number of AMP data are obtained from publicly accessible databanks, which are valuable resources for mining patterns to design new models for AMP prediction. However, due to the current flaws in assessing computational methods, more interrogations are warranted for accurate evaluation/analysis. Considering the diversity of AMPs and newly reported ones, an improvement in Machine Learning algorithms are crucial. In this review, we aim to provide valuable information about different types of AMPs, their mechanism of action and a landscape of current databases and computational tools as resources to collect AMPs and beneficial tools for the prediction and design of a computational model for new active AMPs.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Neda Mohammadi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Hemmat Highway, Tehran 1449614535, Iran
- Institute of Pharmacology and Toxicology, University of Bonn, Biomedical Center, Venusberg Campus 1, Bonn 53127, Germany
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Elham Khalili
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14115-111, Iran
| |
Collapse
|
7
|
Colicchio R, Nigro E, Colavita I, Pagliuca C, Di Maro S, Tomassi S, Scaglione E, Carbone F, Carriero MV, Matarese G, Daniele A, Cosconati S, Pessi A, Salvatore F, Salvatore P. A novel smaller β-defensin-derived peptide is active against multidrug-resistant bacterial strains. FASEB J 2021; 35:e22026. [PMID: 34818435 DOI: 10.1096/fj.202002330rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance is becoming a severe obstacle in the fight against acute and chronic infectious diseases that accompany most degenerative illnesses from neoplasia to osteo-arthritis and obesity. Currently, the race is on to identify pharmaceutical molecules or combinations of molecules able to prevent or reduce the insurgence and/or progression of infectivity. Attempts to substitute antibiotics with antimicrobial peptides have, thus far, met with little success against multidrug-resistant (MDR) bacterial strains. During the last decade, we designed and studied the activity and features of human β-defensin analogs, which are salt-resistant, and hence active also under high salt concentrations as, for instance, in cystic fibrosis. Herein, we describe the design, synthesis, and major features of a new 21 aa long molecule, peptide γ2. The latter derives from the γ-core of the β-defensin natural molecules, a small fragment of these molecules still bearing high antibacterial activity. We found that peptide γ2, which contains only one disulphide bond, recapitulates most of the biological properties of natural human β-defensins and can also counteract both Gram-positive and Gram-negative MDR bacterial strains and biofilm formation. Moreover, it has great stability in human serum thereby enhancing its antibacterial presence and activity without cytotoxicity in human cells. In conclusion, peptide γ2 is a promising new weapon also in the battle against intractable infectious diseases.
Collapse
Affiliation(s)
- Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ersilia Nigro
- CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy.,Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | | | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Maria Vincenza Carriero
- Tumor Progression Unit, Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale" IRCCS, Naples, Italy
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Aurora Daniele
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Università degli studi della Campania Luigi Vanvitelli, Caserta, Italy
| | | | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
8
|
Lima HVD, Dos Santos TMC, de Sousa Silva MMA, da Silva Albuquerque JV, Melo LM, de Figueirêdo Freitas VJ, Rádis-Baptista G. The Rhodamine B-encrypted vipericidin peptide, RhoB-Ctn[1-9], displays in vitro antimicrobial activity against opportunistic bacteria and yeasts. Curr Pharm Biotechnol 2021; 23:172-179. [PMID: 33749557 DOI: 10.2174/1389201022666210322123903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Crotalicidin (Ctn), a snake venom cathelicidin-related antimicrobial peptide, is a 34-residue-long linear lysine-rich vipericidin obtained from the South American rattlesnake, Crotalus durissus terrificus. Ctn contains tandem repeats of nine amino acid residues (1KRFKKFFKK9 and 16KRLKKIFKK24; consensus: 1KRhKKhFKK9, h = hydrophobic amino acid) as an integral part of its structure. OBJECTIVE The aim of this study was to evaluate the antimicrobial activity of the encrypted vipericidin nonapeptide KRFKKFFKK, designated as Ctn[1-9], and its structural analogue, rhodamine-B‒conjugated Ctn[1-9], designated as RhoB-Ctn[1-9]. METHOD The susceptibility of representative pathogenic bacteria and yeasts to antimicrobial agents was determined using the broth microdilution minimum inhibitory concentration (MIC) method. Cytotoxicity was estimated using a hemolytic assay. The accumulation of RhoB-Ctn[1-9] in microbial cells was observed by fluorescence microscopy. The antimicrobial synergism of RhoB-Ctn[1-9] with antimicrobials was evaluated using a checkerboard analysis. RESULTS RhoB-conjugated Ctn[1-9] displayed selective antimicrobial activity against infectious gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, and pathogenic species of Candida with low hemolytic effects on human erythrocytes which was not observed with unconjugated Ctn[1-9]. RhoB-Ctn[1-9] could permeate cell membranes and accumulate intracellularly in microbial cells. RhoB-Ctn[1-9] exhibits synergistic effects when used with antibiotics or antifungal agents and reduced the MICs of the peptide and antimicrobials. CONCLUSION These findings indicate the potential of crotalicidin-related short peptides as structural motifs for the diversification of biological functionalities. Further, they set the stage to investigate the molecular mechanisms by which chemically modified vipericidin repeats modulate cell fate.
Collapse
Affiliation(s)
- Hilania Valeria Doudou Lima
- Laboratory of Biochemistry and Biotechnology, Institute of Marine Science, Federal University of Ceará (UFC), Fortaleza-CE. Brazil
| | - Thales Márcio Cabral Dos Santos
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza-CE. Brazil
| | | | - João Victor da Silva Albuquerque
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza-CE. Brazil
| | - Luciana Magalhães Melo
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará (UECE), Fortaleza-CE. Brazil
| | | | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute of Marine Science, Federal University of Ceará (UFC), Fortaleza-CE. Brazil
| |
Collapse
|
9
|
Shwaiki LN, Arendt EK, Lynch KM. Plant compounds for the potential reduction of food waste - a focus on antimicrobial peptides. Crit Rev Food Sci Nutr 2021; 62:4242-4265. [PMID: 33480260 DOI: 10.1080/10408398.2021.1873733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A large portion of global food waste is caused by microbial spoilage. The modern approach to preserve food is to apply different hurdles for microbial pathogens to overcome. These vary from thermal processes and chemical additives, to the application of irradiation and modified atmosphere packaging. Even though such preservative techniques exist, loss of food to spoilage still prevails. Plant compounds and peptides represent an untapped source of potential novel natural food preservatives. Of these, antimicrobial peptides (AMPs) are very promising for exploitation. AMPs are a significant component of a plant's innate defense system. Numerous studies have demonstrated the potential application of these AMPs; however, more studies, particularly in the area of food preservation are warranted. This review examines the literature on the application of AMPs and other plant compounds for the purpose of reducing food losses and waste (including crop protection). A focus is placed on the plant defensins, their natural extraction and synthetic production, and their safety and application in food preservation. In addition, current challenges and impediments to their full exploitation are discussed.
Collapse
Affiliation(s)
- Laila N Shwaiki
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Climacosa FMM, King RAN, Santos BMM, Caoili SEC. Development and Characterization of Polymeric Peptides for Antibody Tagging of Bacterial Targets. Protein Pept Lett 2020; 27:962-970. [PMID: 32342800 DOI: 10.2174/0929866527666200427212940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbe-Binding Peptides (MBPs) are currently being investigated to address the problem of antimicrobial resistance. Strategies enhancing their antimicrobial activity have been developed, including peptide dimerization. Here, we present an alternative approach based on peptide polymerization, yielding hapten-labelled polymeric MBPs that mediate tagging of bacteria with anti-hapten antibodies, for enhanced immune recognition by host phagocytes. METHODS C-terminally amidated analogs of the bacterial-binding peptide IIGGR were synthesized, with or without addition of cysteine residues at both N- and C-termini. Peptides were subjected to oxidizing conditions in a dimethyl-sulfoxide/water solvent system, and polymerization was demonstrated using SDS-PAGE. Peptides were then N-terminally labelled with a trinitrophenyl (TNP) group using trinitrobenzene sulfonate (TNBS). Binding to representative bacteria was demonstrated by ELISA using anti-TNP antibodies and was quantified as half-maximal effective concentration (EC50). Minimum Inhibitory Concentration (MIC) and concentration yielding 50% hemolysis (H50) were estimated. Neutrophil phagocytic index was determined for TNP-labelled polymeric bacterial- binding peptide (Pbac) with anti-TNP antibodies and/or serum complement. RESULTS Polydisperse Pbac was synthesized. EC50 was lower for Pbac than for the corresponding monomeric form (Mbac), for both Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922. MIC and H50 were >250μg/mL for both Pbac and Mbac. A complement-independent increase in neutrophil phagocytic index was observed for E. coli treated with TNP-labelled Pbac in conjunction with anti-TNP antibodies. CONCLUSION Our data suggest that hapten-labelled polymeric bacterial-binding peptides may easily be produced from even crude synthetic oligopeptide precursors, and that such bacterial-binding peptides in conjunction with cognate anti-hapten antibodies can enhance immune recognition of bacteria by host phagocytes.
Collapse
Affiliation(s)
- Fresthel Monica M Climacosa
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila, Philippines,Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Ruby Anne N King
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Bobbie Marie M Santos
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines,Department of Ophthalmology and Visual Sciences, University of the Philippines - Philippine General Hospital, Manila, Philippines
| | - Salvador Eugenio C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| |
Collapse
|
11
|
Selectivity of Antimicrobial Peptides: A Complex Interplay of Multiple Equilibria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:175-214. [DOI: 10.1007/978-981-13-3588-4_11] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Shruti SR, Rajasekaran R. Identification of protegrin-1 as a stable and nontoxic scaffold among protegrin family - a computational approach. J Biomol Struct Dyn 2018; 37:2430-2439. [PMID: 30047844 DOI: 10.1080/07391102.2018.1491418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Achieving both, nontoxicity and stability in antimicrobial peptides (AMP) is a challenge. This study predicts a structurally stable, nontoxic scaffold among the protegrin family, for future therapeutic peptide analogs. Protegrins (PG) are a class of pharmaceutically approved, in demand AMPs, which require further improvement in terms of nontoxicity and stability. Out of five protegrins viz., PG1, PG2, PG3, PG4 and PG5, PG1 has been predicted as best scaffold. Prediction was based upon sequential elimination of other protegrins, using computational methods to assess the extracellular bacterial membrane penetrability, nontoxicity and structural stability by geometric observables. Initially, PG2 and PG4 showing the lowest membrane penetrability and highest toxicity respectively, were screened out. Among the remaining three protegrins, PG1 displayed both lowest root mean square deviation and radius of gyration, with a considerable occupancy of seven H-bonds and established uniform secondary structure profile throughout its ensembles. Therefore, the authors claim the superiority of PG1 as a nontoxic stable scaffold among its family. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S R Shruti
- a Department of Biotechnology, Bioinformatics lab, School of Biosciences and Technology , VIT (Deemed to be University) , Vellore , Tamil Nadu , India
| | - R Rajasekaran
- a Department of Biotechnology, Bioinformatics lab, School of Biosciences and Technology , VIT (Deemed to be University) , Vellore , Tamil Nadu , India
| |
Collapse
|
13
|
Zohrab F, Askarian S, Jalili A, Kazemi Oskuee R. Biological Properties, Current Applications and Potential Therapeautic Applications of Brevinin Peptide Superfamily. Int J Pept Res Ther 2018; 25:39-48. [PMID: 32214928 PMCID: PMC7087712 DOI: 10.1007/s10989-018-9723-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 12/28/2022]
Abstract
The Brevinin peptides are antimicrobial agents obtained from frog skin secretions. Brevinin-2R has attracted many attentions due to its very low hemolytic activity, cationic property, and high affinity to cancer cells. Moreover, it has shown little toxicity against normal mammalian cells, while having killed several tumor cell lines by activation of lysosome-mitochondrial death pathway. In this review, we introduced the Brevinin superfamily with a focus on its therapeutic applications. Next, some unique properties of Brevinins were briefly discussed, including their ability to stimulate insulin secretion, dendritic cell maturation, and wound healing. In this context, we also provide information about the decoration of nanoparticles, such as cerium nano-oxide, by Brevinins. Finally, we addressed their potential for anti-tumor and drug design applications.
Collapse
Affiliation(s)
- Fatemeh Zohrab
- 1Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeedeh Askarian
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amin Jalili
- 1Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- 3Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Abstract
For antimicrobial peptides to be interesting for systemic applications, they must show low toxicity against erythrocytes. In this chapter, we describe a protocol for measuring the ability of AMPs to lyse human red blood cells, using melittin as positive control.
Collapse
Affiliation(s)
- Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|