1
|
Abbasi DA, Berry-Kravis E, Zhao X, Cologna SM. Proteomics insights into fragile X syndrome: Unraveling molecular mechanisms and therapeutic avenues. Neurobiol Dis 2024; 194:106486. [PMID: 38548140 PMCID: PMC11650894 DOI: 10.1016/j.nbd.2024.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopment disorder characterized by cognitive impairment, behavioral challenges, and synaptic abnormalities, with a genetic basis linked to a mutation in the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene that results in a deficiency or absence of its protein product, Fragile X Messenger Ribonucleoprotein (FMRP). In recent years, mass spectrometry (MS) - based proteomics has emerged as a powerful tool to uncover the complex molecular landscape underlying FXS. This review provides a comprehensive overview of the proteomics studies focused on FXS, summarizing key findings with an emphasis on dysregulated proteins associated with FXS. These proteins span a wide range of cellular functions including, but not limited to, synaptic plasticity, RNA translation, and mitochondrial function. The work conducted in these proteomic studies provides a more holistic understanding to the molecular pathways involved in FXS and considerably enhances our knowledge into the synaptic dysfunction seen in FXS.
Collapse
Affiliation(s)
- Diana A Abbasi
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Xinyu Zhao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, United States of America.
| |
Collapse
|
2
|
Chen YN, Du HY, Shi ZY, He L, He YY, Wang D. Serum proteomic profiling for autism using magnetic bead-assisted matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a pilot study. World J Pediatr 2018; 14:233-237. [PMID: 29368242 DOI: 10.1007/s12519-017-0102-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/04/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND The pathogenesis of autism spectrum disorders remains elusive and currently there are no diagnostic or predictive biomarkers in autism available. Proteomic profiling has been used in a wide range of neurodevelopmental disorder studies, which could produce deeper perceptions of the molecular bases behind certain disease and potentially becomes useful in discovering biomarkers in autism spectrum disorders. METHODS Serum samples were collected from autistic children about 3 years old in age (n = 32) and healthy controls (n = 20) in similar age and gender. The samples were identified specific proteins that are differentially expressed by magnetic bead-based pre-fractionation and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF-MS). RESULTS Eight protein peaks were significantly different in autistic children from the healthy controls (P < 0.0001). The two peaks with the most significant differences were 6428 and 7758 Da in size. CONCLUSION According to differences in serum protein profiles between the autistic children and healthy controls, this study identified a set of differentially expressed proteins those are significant for further evaluation and might function as biomarkers in autism.
Collapse
Affiliation(s)
- Yan-Ni Chen
- Department of Health Care, Xi'an Children's Hospital, Xi'an Jiaotong University, 69 Xijuyuanxiang, Xi'an, 710002, China.
| | - Hui-Ying Du
- Department of Health Care, Xi'an Children's Hospital, Xi'an Jiaotong University, 69 Xijuyuanxiang, Xi'an, 710002, China
| | - Zhuo-Yue Shi
- Department of Biology, College of Liberal Arts and Science, The University of Iowa, Iowa, USA
| | - Li He
- Department of Health Care, Xi'an Children's Hospital, Xi'an Jiaotong University, 69 Xijuyuanxiang, Xi'an, 710002, China
| | - Yu-Ying He
- Xi'an Maternal and Child Health Hospital, 73 West Street, Xi'an, 710002, China
| | - Duan Wang
- Department of Pediatrics, Shaanxi University of Chinese Medicine, Xianyang, Shannxi, China
| |
Collapse
|
3
|
Wei H, Ma Y, Liu J, Ding C, Hu F, Yu L. Proteomic analysis of cortical brain tissue from the BTBR mouse model of autism: Evidence for changes in STOP and myelin-related proteins. Neuroscience 2016; 312:26-34. [DOI: 10.1016/j.neuroscience.2015.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/19/2023]
|
4
|
Ngounou Wetie AG, Wormwood KL, Charette L, Ryan JP, Woods AG, Darie CC. Comparative two-dimensional polyacrylamide gel electrophoresis of the salivary proteome of children with autism spectrum disorder. J Cell Mol Med 2015; 19:2664-78. [PMID: 26290361 PMCID: PMC4627571 DOI: 10.1111/jcmm.12658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023] Open
Abstract
In the last decades, prevalence of autism spectrum disorder (ASD) has been on the rise. However, clear aetiology is still elusive and improvements in early diagnosis are needed. To uncover possible biomarkers present in ASD, we used two-dimensional polyacrylamide gel electrophoresis and nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), to compare salivary proteome profiling of children with ASD and controls. A total of 889 spots were compared and only those spots with a fold change ≥1.7 and a P-value <0.05 or a fold change of ≥3.0 between ASD cases and controls were analysed by nanoLC-MS/MS. Alpha-amylase, CREB-binding protein, p532, Transferrin, Zn alpha2 glycoprotein, Zymogen granule protein 16, cystatin D and plasminogen were down-regulated in ASD. Increased expression of proto-oncogene Frequently rearranged in advanced T-cell lymphomas 1 (FRAT1), Kinesin family member 14, Integrin alpha6 subunit, growth hormone regulated TBC protein 1, parotid secretory protein, Prolactin-inducible protein precursor, Mucin-16, Ca binding protein migration inhibitory factor-related protein 14 (MRP14) was observed in individuals with ASD. Many of the identified proteins have previously been linked to ASD or were proposed as risk factors of ASD at the genetic level. Some others are involved in pathological pathways implicated in ASD causality such as oxidative stress, lipid and cholesterol metabolism, immune system disturbances and inflammation. These data could contribute to protein signatures for ASD presence, risk and subtypes, and advance understanding of ASD cause as well as provide novel treatment targets for ASD.
Collapse
Affiliation(s)
- Armand G Ngounou Wetie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kelly L Wormwood
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Laci Charette
- SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA.,Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Jeanne P Ryan
- Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.,SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
5
|
Woods AG, Wormwood KL, Wetie AGN, Aslebagh R, Crimmins BS, Holsen TM, Darie CC. Autism spectrum disorder: an omics perspective. Proteomics Clin Appl 2014; 9:159-68. [PMID: 25311756 DOI: 10.1002/prca.201400116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/11/2014] [Accepted: 10/07/2014] [Indexed: 01/02/2023]
Abstract
Current directions in autism spectrum disorder (ASD) research may require moving beyond genetic analysis alone, based on the complexity of the disorder, heterogeneity and convergence of genetic alterations at the cellular/functional level. Mass spectrometry (MS) has been increasingly used to study CNS disorders, including ASDs. Proteomic research using MS is directed at understanding endogenous protein changes that occur in ASD. This review focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using MS, including fragile X syndrome (FXS) and Smith-Lemli-Opitz Syndrome (SLOS), genetic syndromes highly associated with ASD comorbidity.
Collapse
Affiliation(s)
- Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA; SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA
| | | | | | | | | | | | | |
Collapse
|