1
|
Kumar A, Lunawat AK, Kumar A, Sharma T, Islam MM, Kahlon MS, Mukherjee D, Narang RK, Raikwar S. Recent Trends in Nanocarrier-Based Drug Delivery System for Prostate Cancer. AAPS PharmSciTech 2024; 25:55. [PMID: 38448649 DOI: 10.1208/s12249-024-02765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Prostate cancer remains a significant global health concern, requiring innovative approaches for improved therapeutic outcomes. In recent years, nanoparticle-based drug delivery systems have emerged as promising strategies to address the limitations of conventional cancer chemotherapy. The key trends include utilizing nanoparticles for enhancing drug delivery to prostate cancer cells. Nanoparticles have some advantages such as improved drug solubility, prolonged circulation time, and targeted delivery of drugs. Encapsulation of chemotherapeutic agents within nanoparticles allows for controlled release kinetics, reducing systemic toxicity while maintaining therapeutic efficacy. Additionally, site-specific accumulation within the prostate tumor microenvironment is made possible by the functionalization of nanocarrier with targeted ligands, improving therapeutic effectiveness. This article highlights the basics of prostate cancer, statistics of prostate cancer, mechanism of multidrug resistance, targeting approach, and different types of nanocarrier used for the treatment of prostate cancer. It also includes the applications of nanocarriers for the treatment of prostate cancer and clinical trial studies to validate the safety and efficacy of the innovative drug delivery systems. The article focused on developing nanocarrier-based drug delivery systems, with the goal of translating these advancements into clinical applications in the future.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Akshay Kumar Lunawat
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Tarun Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Milan Singh Kahlon
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Debanjan Mukherjee
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Ribeiro M, Gomes IB, Saavedra MJ, Simões M. Photodynamic therapy and combinatory treatments for the control of biofilm-associated infections. Lett Appl Microbiol 2022; 75:548-564. [PMID: 35689422 DOI: 10.1111/lam.13762] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/26/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
The advent of antimicrobial resistance has added considerable impact to infectious diseases both in the number of infections and healthcare costs. Furthermore, the relentless emergence of multidrug-resistant bacteria, particularly in the biofilm state, has made mandatory the discovery of new alternative antimicrobial therapies that are capable to eradicate resistant bacteria and impair the development of new forms of resistance. Amongst the therapeutic strategies for treating biofilms, antimicrobial photodynamic therapy (aPDT) has shown great potential in inactivating several clinically relevant micro-organisms, including antibiotic-resistant 'priority bacteria' declared by the WHO as critical pathogens. Its antimicrobial effect is centred on the basis that harmless low-intensity light stimulates a non-toxic dye named photosensitizer, triggering the production of reactive oxygen species upon photostimulation. In addition, combination therapies of aPDT with other antimicrobial agents (e.g. antibiotics) have also drawn considerable attention, as it is a multi-target strategy. Therefore, the present review highlights the recent advances of aPDT against biofilms, also covering progress on combination therapy.
Collapse
Affiliation(s)
- M Ribeiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - I B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - M J Saavedra
- Department of Veterinary Sciences, School of Agriculture and Veterinary Science, UTAD, Vila Real, Portugal.,Centre for the Research and Technology for Agro-Environment and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - M Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal.,ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Veloso SRS, Andrade RGD, Castanheira EMS. Magnetoliposomes: recent advances in the field of controlled drug delivery. Expert Opin Drug Deliv 2021; 18:1323-1334. [PMID: 33836636 DOI: 10.1080/17425247.2021.1915983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Magnetoliposomes have gained increasing attention as delivery systems, as they surpass many limitations associated with liposomes. The combination with magnetic nanoparticles provides a means for development of multimodal and multifunctional theranostic agents that enable on-demand drug release and real-time monitoring of therapy. AREAS COVERED Recently, several magnetoliposome structures have been reported to ensure efficient transport and delivery of therapeutics, while improving magnetic properties. Besides, novel techniques have been introduced to improve on-demand release, as well as to achieve sequential release of different therapeutic agents. This review presents the major types and methods of preparation of magnetoliposomes, and discusses recent strategies in the trigger of drug release, development of theranostic formulations, and delivery of drugs and biological entities. EXPERT OPINION Despite significant advances in efficient drug delivery, current literature lacks an assessment of formulations as theranostic agents and complementary techniques to optimize thermotherapy efficiency. Plasmonic magnetoliposomes are highly promising multimodal and multifunctional systems, providing the required design versatility to optimize theranostic capabilities. Further, photodynamic therapy and delivery of proteins/genes can be improved with a deeper research on the employed magnetic material and associated toxicity. A scale-up procedure is also lacking in recent research, which is limiting their translation to clinical use.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Raquel G D Andrade
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Elisabete M S Castanheira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
4
|
Zagami R, Sortino G, Caruso E, Malacarne MC, Banfi S, Patanè S, Monsù Scolaro L, Mazzaglia A. Tailored-BODIPY/Amphiphilic Cyclodextrin Nanoassemblies with PDT Effectiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8639-8651. [PMID: 29936841 DOI: 10.1021/acs.langmuir.8b01049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphilic cyclodextrins (aCDs) are an intriguing class of carrier systems which, recently, have been proposed to deliver porphyrinoids and anticancer drugs or combined dose of both for dual therapeutic applications. The design of nanoassemblies based on aCD and photosensitizers (PSs) aims to preserve the photodynamic therapy (PDT) efficacy of PS, reducing the tendency of PS to self-aggregate, without affecting the quantum yield of singlet oxygen (1O2) production, and, not less importantly, minimizing dark toxicity and reducing photosensitization effects. With this idea in mind, in this paper, we focus on nanoassemblies between a non-ionic aCD (SC6OH) and halo-alkyl tailored iodinated boron-dipyrromethenes (BODIPY) dye, a class of molecules which recently have been successfully proposed as a stimulating alternative to porphyrinoids for their high photodynamic efficacy. Nanoassemblies of BODIPY/aCD (BL01I@SC6OH) were prepared in different aqueous media by evaporation of mixed organic film of aCD and BODIPY, hydration, and sonication. The nanostructures were characterized, measuring their hydrodynamic diameter and ξ-potential and also evaluating their time-stability in biological relevant media. Taking advantage of emissive properties of the not-iodinated BODIPY analogue (BL01), nanoassemblies based on aCD and BL01 were investigated as model system to get insight on entanglement of BODIPY in the amphiphile in aqueous dispersion, pointing out that BODIPY is well-entrapped in monomeric form (τ ≅ 6.5 ns) within the colloidal carriers. Also morphology and fluorescence emission properties were elucidated after casting the solution on glass. BL01@SC6OH is easily detectable in cytoplasm of HCT116 cell lines, evidencing the remarkable intracellular penetration of this nanoassembly similar to free BODIPY. On the same cell lines, the photodynamically active assembly BL01I/aCD shows toxicity upon irradiation. Despite the fact that free BL01I is more PDT active than its assembly, aCD can modulate the cell uptake of BODIPY, pointing out the potential of this system for in vivo PDT application.
Collapse
Affiliation(s)
- R Zagami
- CNR-ISMN c/o Dipartimento di Scienze Chimiche, Biologiche , Farmaceutiche ed Ambientali dell'Università di Messina , Viale F. Stagno d'Alcontres 31 , 98166 , Messina , Italy
| | - G Sortino
- CNR-ISMN c/o Dipartimento di Scienze Chimiche, Biologiche , Farmaceutiche ed Ambientali dell'Università di Messina , Viale F. Stagno d'Alcontres 31 , 98166 , Messina , Italy
| | - E Caruso
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV) , Università dell'Insubria , Via J.H. Dunant 3 , 21100 , Varese , Italy
| | - M C Malacarne
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV) , Università dell'Insubria , Via J.H. Dunant 3 , 21100 , Varese , Italy
| | - S Banfi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV) , Università dell'Insubria , Via J.H. Dunant 3 , 21100 , Varese , Italy
| | - S Patanè
- Dipartimento di Scienze matematiche e informatiche, scienze fisiche e scienze della terra . Università di Messina , Viale F. Stagno d'Alcontres 31 , 98166 , Messina , Italy
| | - L Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali , University of Messina , Viale F. Stagno d'Alcontres 31 , 98166 , Messina , Italy
- C.I.R.C.M.S.B , Unity of Messina , Messina , Italy
| | - A Mazzaglia
- CNR-ISMN c/o Dipartimento di Scienze Chimiche, Biologiche , Farmaceutiche ed Ambientali dell'Università di Messina , Viale F. Stagno d'Alcontres 31 , 98166 , Messina , Italy
| |
Collapse
|
5
|
Chen YL, Liu FQ, Guo Y, Cheng J, Yang L, Lu M, Li P, Xu J, Yu T, Wang ZG, Cao Y, Ran HT. PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles. Biomater Sci 2018; 6:2130-2143. [PMID: 29916500 DOI: 10.1039/c8bm00213d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis is a common pathological characteristic of many solid tumors and vulnerable atherosclerotic plaques.
Collapse
|
6
|
Bondì ML, Scala A, Sortino G, Amore E, Botto C, Azzolina A, Balasus D, Cervello M, Mazzaglia A. Nanoassemblies Based on Supramolecular Complexes of Nonionic Amphiphilic Cyclodextrin and Sorafenib as Effective Weapons to Kill Human HCC Cells. Biomacromolecules 2015; 16:3784-91. [DOI: 10.1021/acs.biomac.5b01082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maria Luisa Bondì
- CNR-ISMN Istituto
per lo Studio dei Materiali Nanostrutturati - U.O.S. di Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Angela Scala
- Dipartimento
di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Sortino
- CNR-ISMN Istituto
per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze
Chimiche, Biologiche, Farmaceutiche ed Ambientali dell’Universitá
di Messina, V.le F.Stagno D’Alcontres
31, 98166 Messina, Italy
| | - Erika Amore
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Chiara Botto
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Antonina Azzolina
- Istituto di Biomedicina
e Immunologia Molecolare “A. Monroy” - Consiglio Nazionale
delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Daniele Balasus
- Istituto di Biomedicina
e Immunologia Molecolare “A. Monroy” - Consiglio Nazionale
delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Melchiorre Cervello
- Istituto di Biomedicina
e Immunologia Molecolare “A. Monroy” - Consiglio Nazionale
delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Antonino Mazzaglia
- CNR-ISMN Istituto
per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze
Chimiche, Biologiche, Farmaceutiche ed Ambientali dell’Universitá
di Messina, V.le F.Stagno D’Alcontres
31, 98166 Messina, Italy
| |
Collapse
|