1
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Valorization of agro-food wastes: Ease of concomitant-enzymes production with application in food and biofuel industries. BIORESOURCE TECHNOLOGY 2022; 361:127738. [PMID: 35940324 DOI: 10.1016/j.biortech.2022.127738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The novel and greener approach toward the co-production of hydrolytic enzymes in a single-cultivation medium with inexpensive substrates can bring down the production costs. Likewise, the natural and industrial organic biomass/solid are all nutritionally rich substrates waiting for free use in industries such as food, biofuel, etc. Valorization must broaden its applications in industries and households with a step towards a sustainable environment. The biofuel approach can be projected as one of the most promising deputations to meet future energy demands, in reduction of the environmental pollution due to excessive fossil fuel consumption. The present review highlights the multifaceted stature of microbial enzymes in this direction and possible implications mainly in the food industry and biofuel with the global impact of similar bio-based industries. In this review, design scale-up, fermentation cost, energy needs,and agro-food waste management have been meticulously delineated.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Shivani M Yagnik
- Department of Microbiology, Christ College, Vidya Niketan, Rajkot 360005, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, India.
| |
Collapse
|
2
|
Microbial Peptidase in Food Processing: Current State of the Art and Future Trends. Catal Letters 2022. [DOI: 10.1007/s10562-022-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
4
|
Bio-prospecting the future in perspective of amidohydrolase L-glutaminase from marine habitats. Appl Microbiol Biotechnol 2021; 105:5325-5340. [PMID: 34236482 DOI: 10.1007/s00253-021-11416-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/14/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
In the current scenario, considerable attention is being given to the enzyme L-glutaminase (EC 3.5.1.2). It belongs to the amidohydrolase class adherent to the family of serine-reliant β-lactamases and the penicillin-binding proteins due to its higher affinity to polymerize and modify peptidoglycan synthesis. However, based on the catalytic proficiency, L-glutaminase is characterized as a proteolytic endopeptidase that cleaves peptide linkage and emancipates various byproducts, viz. ammonia along with glutamate. L-glutamine is considered the key amino acid reportedly involved in multiple metabolic pathways such as nitrogen metabolism. The present review is focused on the recent development and aspects concomitant to the biotechnological applicability of L-glutaminase predominantly from the marine habitat. Additionally, a majority of L-glutaminases finds application in cancer therapy as therapeutic agents, especially for acute lymphocytic leukaemia. The in vitro studies have been effective against various human cancer cell lines. L-glutaminase enhances the growth of probiotic bacteria. Apart from all these applications, it is suitably applicable in fermented foods as a flavour enhancer especially the umami flavour and content. Marine habitats have largely been exploited for their bio-catalytic potential but very scarcely for therapeutic enzymes. Some of the reports of such marine bacterial isolates from Bacillus sp., Pseudomonas sp. and Vibrio sp. are in the domain, but none highlights the therapeutic applications predominantly as anticancer and anti-proliferative agents. KEY POINTS: The exploration of marine habitats along the Gujarat coasts mainly for bacteria secreting L-glutaminase is scarcely reported, and even more scarce are the amidohydrolases from these marine niches as compared to their terrestrial counterparts. Microbial sourced amidohydrolase has wide bio-applicability that includes food, cosmetics and therapeutics especially as anticancer/anti-proliferative agent making it of immense biotechnological significance.
Collapse
|
5
|
Rezvani V, Pourianfar HR, Mohammadnejad S, Madjid Ansari A, Farahmand L. Anticancer potentiality and mode of action of low-carbohydrate proteins and peptides from mushrooms. Appl Microbiol Biotechnol 2020; 104:6855-6871. [PMID: 32556413 DOI: 10.1007/s00253-020-10707-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects of chemotherapy as well as drug resistance highlight the ongoing need to discover novel natural bioactive compounds with anticancer potentiality. Mushroom-derived proteins are among the naturally occurring compounds that have been the subject of a body of research on their potentiality in cancer therapy. The greatest attention in relevant review articles has been paid to well-known mushroom-derived glycoproteins such as lectins and protein-bound polysaccharide complexes such as polysaccharide-K (PSK) or krestin and polysaccharopeptide (PSP), which contain substantial amounts of carbohydrates (50-90%). These complex compounds exert their anticancer activity mainly by binding to cell membranes leading to extrinsic (death receptor) apoptosis or intrinsic (mitochondrial) apoptotic pathways. However, several other research studies have reported pure, well-characterized, proteins or peptides from mushrooms, which are carbohydrate-free or have very low amounts of carbohydrate. These proteins may fall into four categories including fungal immunomodulatory proteins, ubiquitin-like proteins, enzymes, and unclassified proteins. Well-defined chemical structure, elucidated full amino acid or N-terminal sequences, purity, and having some distinct and specific pathways compared to glycoproteins have made these low-carbohydrate proteins attractive for cancer research. The aim of this review was therefore to improve the current understanding of mushroom-derived low-carbohydrate proteins and to consolidate the existing knowledge of the most promising mushroom species from which low-carbohydrate proteins have been derived, characterized, and examined for their anticancer activity. In addition, molecular targets and mechanisms of action of these proteins have been discussed. Key points • Mushroom-derived low-carbohydrate proteins lack or have low carbohydrate. • Low-carbohydrate proteins show potent anticancer activities in vitro and in vivo. • There are specific pathways for low-carbohydrate proteins to inhibit cancer cells.
Collapse
Affiliation(s)
- Vala Rezvani
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Hamid R Pourianfar
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran.
| | - Safoora Mohammadnejad
- Industrial Fungi Biotechnology Research Department, Research Institute for Industrial Biotechnology, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, P.O. Box 91775-1376, Mashhad, Iran
| | - Alireza Madjid Ansari
- Integrative Oncology Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Moatamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|