1
|
Subbotina J, Lobaskin V. Multiscale Modeling of Bio-Nano Interactions of Zero-Valent Silver Nanoparticles. J Phys Chem B 2022; 126:1301-1314. [PMID: 35132861 PMCID: PMC8859825 DOI: 10.1021/acs.jpcb.1c09525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Understanding the
specifics of interaction between the protein
and nanomaterial is crucial for designing efficient, safe, and selective
nanoplatforms, such as biosensor or nanocarrier systems. Routing experimental
screening for the most suitable complementary pair of biomolecule
and nanomaterial used in such nanoplatforms might be a resource-intensive
task. While a range of computational tools are available for prescreening
libraries of proteins for their interactions with small molecular
ligands, choices for high-throughput screening of protein libraries
for binding affinities to new and existing nanomaterials are very
limited. In the current work, we present the results of the systematic
computational study of interaction of various biomolecules with pristine
zero-valent noble metal nanoparticles, namely, AgNPs, by using the UnitedAtom multiscale approach. A set of blood plasma and
dietary proteins for which the interaction with AgNPs was described
experimentally were examined computationally to evaluate the performance
of the UnitedAtom method. A set of interfacial descriptors
(log PNM, adsorption affinities, and adsorption
affinity ranking), which can characterize the relative hydrophobicity/hydrophilicity/lipophilicity
of the nanosized silver and its ability to form bio(eco)corona, was
evaluated for future use in nano-QSAR/QSPR studies.
Collapse
Affiliation(s)
- Julia Subbotina
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Disrupting Irreversible Bacterial Adhesion and Biofilm Formation with an Engineered Enzyme. Appl Environ Microbiol 2021; 87:e0026521. [PMID: 33893112 DOI: 10.1128/aem.00265-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is often attributed to postharvest bacterial persistence on fresh produce and food handling surfaces. In this study, a predicted glycosyl hydrolase enzyme was expressed, purified, and validated for the removal of microbial biofilms from biotic and abiotic surfaces under conditions used for chemical cleaning agents. Crystal violet biofilm staining assays revealed that 0.1 mg/ml of enzyme inhibited up to 41% of biofilm formation by Escherichia coli O157:H7, E. coli 25922, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes. Furthermore, the enzyme was effective at removing mature biofilms, providing a 35% improvement over rinsing with a saline solution alone. Additionally, a parallel-plate flow cell was used to directly observe and quantify the impact of enzyme rinses on E. coli O157:H7 cells adhering to spinach leaf surfaces. The presence of 1 mg/liter enzyme resulted in nearly 6-times-higher detachment rate coefficients than a deionized (DI) water rinse, while the total cells removed from the surface increased from 10% to 25% over the 30-min rinse time, reversing the initial phases of biofilm formation. Enzyme treatment of all 4 cell types resulted in significantly reduced cell surface hydrophobicity and collapse of negatively stained E. coli 25922 cells imaged by electron microscopy, suggesting potential polysaccharide surface modification of enzyme-treated bacteria. Collectively, these results point to the broad substrate specificity and robustness of the enzyme for different types of biofilm stages, solution conditions, and pathogen biofilm types and may be useful as a method for the removal or inhibition of bacterial biofilm formation. IMPORTANCE In this study, the ability of an engineered enzyme to reduce bacterial adhesion and biofilm formation of several foodborne pathogens was demonstrated, representing a promising option for enhancing or replacing chlorine and other chemical sanitizers in food processing applications. Specifically, significant reductions of biofilms of the pathogens Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes are observed, as are reductions in initial adhesion. Enzymes have the added benefits of being green, sustainable alternatives to chemical sanitizers, as well as having a minimal impact on food properties, in contrast to many alternative antimicrobial options such as bleach that aim to minimize food safety risks.
Collapse
|
3
|
Bhattacharya P, Dey A, Neogi S. An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles. J Mater Chem B 2021; 9:5329-5339. [PMID: 34143165 DOI: 10.1039/d1tb00875g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exact mechanism behind the antibacterial efficacy of nanoparticles has remained unexplored to date. This study aims to shed light the mechanism adopted using magnesium oxide nanoparticles prepared in ethyl alcohol against gram-negative and gram-positive bacterial cells, and the generation of reactive oxygen species (ROS) is proposed to be the dominant mechanism. This paradigm is supported by the quantification of the hydroxyl radical and superoxide anions produced in the nanoparticle treated and untreated bacterial solutions, and by the reduction of the antibacterial efficiency after the addition of a radical scavenger. The production of free Mg2+ ions from the nanoparticle is supposed to be the causative agent behind this uncontrolled ROS generation, resulting in excessive oxidative stress, which the antioxidants of the bacterial cells are unable to nullify, leading to cell damage. The amount of proteins, carbohydrates and lipids leaked due to the distortion of the cellular membrane is also quantified, and it is observed that their leakage trend varies on the structure of the bacterial cell. FESEM images taken at certain time intervals show the gradual internalization of the nanoparticles, and increasing rupture of bacterial cell membranes, leading to cell necrosis.
Collapse
Affiliation(s)
| | - Aishee Dey
- Indian Institute of Technology Kharagpur, 721302, India.
| | - Sudarsan Neogi
- Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
4
|
Khan SA, Lee CS. Recent progress and strategies to develop antimicrobial contact lenses and lens cases for different types of microbial keratitis. Acta Biomater 2020; 113:101-118. [PMID: 32622052 DOI: 10.1016/j.actbio.2020.06.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Although contact lenses are widely used for vision correction, they are also the primary cause of a number of ocular diseases such as microbial keratitis (MK), etc. and inflammatory events such as infiltrative keratitis (IK), contact lens acute red eye (CLARE), contact lens-induced peripheral ulcer (CLPU), etc. These diseases and infiltrative events often result from microbial contamination of lens care solutions and lens cases that can be exacerbated by unsanitary lens care and extended lens wear. The treatment of microbial biofilms (MBs) on lens cases and contact lenses are complicated and challenging due to their resistance to conventional antimicrobial lens care solutions. More importantly, MK caused by MBs can lead to acute visual damage or even vision impairment. Therefore, the development of lens cases, lens care solutions, and contact lenses with effective antimicrobial performance against MK will contribute to the safe use of contact lenses. This review article summarizes and discusses different chemical approaches for the development of antimicrobial contact lenses and lens cases employing passive surface modifications, antimicrobial peptides, free-radical fabricating agents, quorum sensing quenchers, antibiotics, antifungal drugs and various metals and coatings with antimicrobial nanomaterials. The benefits and shortcomings of these approaches are assessed, and alternative solutions for future developments are discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|
6
|
Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 2017; 101:3991-4008. [PMID: 28409384 DOI: 10.1007/s00253-017-8264-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Environmental stresses are usually active during the process of microbial fermentation and have significant influence on microbial physiology. Microorganisms have developed a series of strategies to resist environmental stresses. For instance, they maintain the integrity and fluidity of cell membranes by modulating their structure and composition, and the permeability and activities of transporters are adjusted to control nutrient transport and ion exchange. Certain transcription factors are activated to enhance gene expression, and specific signal transduction pathways are induced to adapt to environmental changes. Besides, microbial cells also have well-established repair mechanisms that protect their macromolecules against damages inflicted by environmental stresses. Oxidative, hyperosmotic, thermal, acid, and organic solvent stresses are significant in microbial fermentation. In this review, we summarize the modus operandi by which these stresses act on cellular components, as well as the corresponding resistance mechanisms developed by microorganisms. Then, we discuss the applications of these stress resistance mechanisms on the production of industrially important chemicals. Finally, we prospect the application of systems biology and synthetic biology in the identification of resistant mechanisms and improvement of metabolic robustness of microorganisms in environmental stresses.
Collapse
Affiliation(s)
- Ningzi Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|