1
|
Mutoh T, Aono H, Mutoh Y, Ishikawa T. Dual-energy X-ray absorptiometry for detecting neurogenic pulmonary edema in a mouse model of subarachnoid hemorrhage. Animal Model Exp Med 2025. [PMID: 40302218 DOI: 10.1002/ame2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/12/2025] [Indexed: 05/02/2025] Open
Abstract
Murine subarachnoid hemorrhage (SAH) induced using the filament perforation method is a useful in vivo experimental model to investigate the pathophysiological mechanisms in the brain underlying SAH. However, identifying mice with comorbid acute neurogenic pulmonary edema (NPE), a life-threatening systemic consequence often induced by SAH, in this model is difficult without histopathological investigations. Herein, we present an imaging procedure involving dual-energy X-ray absorptiometry (DXA) to identify NPE in a murine model of SAH. We quantified the lung lean mass (LM) and compared the relationship between micro-computed tomography (CT) evidence of Hounsfield unit (HU) values and histopathological findings of PE. Of the 85 mice with successful induction of SAH by filament perforation, 16 (19%) had NPE, as verified by postmortem histology. The DXA-LM values correlate well with CT-HU levels (r = 0.63, p < 0.0001). Regarding the relationship between LM and HU in mice with post-SAH NPE, the LM was positively associated with HU values (r2 = 0.43; p = 0.0056). A receiver operating characteristics curve of LM revealed a sensitivity of 87% and specificity of 57% for detecting PE, with a similar area under the curve as the HU (0.79 ± 0.06 vs. 0.84 ± 0.07; p = 0.21). These data suggest that confirming acute NPE using DXA-LM is a valuable method for selecting a clinically relevant murine NPE model that could be used in future experimental SAH studies.
Collapse
Affiliation(s)
- Tatsushi Mutoh
- Division of Neurocritical Care, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroaki Aono
- Division of Neurocritical Care, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Yushi Mutoh
- Shukoh Course Sendai Ikuei Gakuen High School, Sendai, Japan
| | - Tatsuya Ishikawa
- Division of Neurocritical Care, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| |
Collapse
|
2
|
Horton KKA, Campanaro CK, Clifford C, Nethery DE, Strohl KP, Jacono FJ, Dick TE. Cannabinoid Receptor mRNA Expression in Central and Peripheral Tissues in a Rodent Model of Peritonitis. Cannabis Cannabinoid Res 2023; 8:510-526. [PMID: 35446129 PMCID: PMC10249742 DOI: 10.1089/can.2021.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Our laboratory investigates changes in the respiratory pattern during systemic inflammation in various rodent models. The endogenous cannabinoid system (ECS) regulates cytokine production and mitigates inflammation. Inflammation not only affects cannabinoid (CB) 1 and CB2 receptor gene expression (Cnr1 and Cnr2), but also increases the predictability of the ventilatory pattern. Objectives: Our primary objective was to track ventilatory pattern variability and transcription of Cnr1 and Cnr2 mRNA, and of Il1b, Il6, and tumor necrosis factor-alpha (Tnfa) mRNAs at multiple time points in central and peripheral tissues during systemic inflammation induced by peritonitis. Methods: In male Sprague Dawley rats (n=24), we caused peritonitis by implanting a fibrin clot containing either 0 or 25×106 Escherichia coli intraperitoneally. We recorded breathing with whole-animal plethysmography at baseline and 1 h before euthanasia. We euthanized the rats at 3, 6, or 12 h after inoculation and harvested the pons, medulla, lung, and heart for gene expression analysis. Results: With peritonitis, Cnr1 mRNA more than Cnr2 mRNA was correlated to Il1b, Il6, and Tnfa mRNAs in medulla, pons, and lung and changed oppositely in the pons, medulla, and lung. These changes were associated with increased predictability of ventilatory pattern. Specifically, nonlinear complexity index correlated with increased Cnr1 mRNA in the pons and medulla, and coefficient of variation for cycle duration correlated with Cnr1 and Cnr2 mRNAs in the lung. Conclusion: The mRNAs for ECS receptors varied with time during the central and peripheral inflammatory response to peritonitis. These changes occurred in the brainstem, which contains the network that generates breathing pattern and thus, may participate in ventilatory pattern changes during systemic inflammation.
Collapse
Affiliation(s)
- Kofi-Kermit A. Horton
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cara K. Campanaro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Caitlyn Clifford
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David E. Nethery
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kingman P. Strohl
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Frank J. Jacono
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Thomas E. Dick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Cannabinoid Type-2 Receptor Agonist, JWH133 May Be a Possible Candidate for Targeting Infection, Inflammation, and Immunity in COVID-19. IMMUNO 2021. [DOI: 10.3390/immuno1030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, is a deadly disease affecting millions due to the non-availability of drugs and vaccines. The majority of COVID-19 drugs have been repurposed based on antiviral, immunomodulatory, and antibiotic potential. The pathogenesis and advanced complications with infection involve the immune-inflammatory cascade. Therefore, a therapeutic strategy could reduce infectivity, inflammation, and immune modulation. In recent years, modulating the endocannabinoid system, particularly activation of the cannabinoid type 2 (CB2) receptor is a promising therapeutic target for modulation of immune-inflammatory responses. JWH133, a selective, full functional agonist of the CB2 receptor, has been extensively studied for its potent anti-inflammatory, antiviral, and immunomodulatory properties. JWH133 modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. In this study, we propose that JWH133 could be a promising candidate for targeting infection, immunity, and inflammation in COVID-19, due to its pharmacological and molecular mechanisms in numerous preclinical efficacy and safety studies, along with its immunomodulatory, anti-inflammatory, organoprotective, and antiviral properties. Thus, JWH133 should be investigated in preclinical and clinical studies for its potential as an agent or adjuvant with other agents for its effect on viremia, infectivity, immune modulation, resolution of inflammation, reduction in severity, and progression of complications in COVID-19. JWH133 is devoid of psychotropic effects due to CB2 receptor selectivity, has negligible toxicity, good bioavailability and druggable properties, including pharmacokinetic and physicochemical effects. We believe that JWH133 could be a promising drug and may inspire further studies for an evidence-based approach against COVID-19.
Collapse
|
4
|
Scheau C, Caruntu C, Badarau IA, Scheau AE, Docea AO, Calina D, Caruntu A. Cannabinoids and Inflammations of the Gut-Lung-Skin Barrier. J Pers Med 2021; 11:494. [PMID: 34072930 PMCID: PMC8227007 DOI: 10.3390/jpm11060494] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified great similarities and interferences between the epithelial layers of the digestive tract, the airways and the cutaneous layer. The relationship between these structures seems to implicate signaling pathways, cellular components and metabolic features, and has led to the definition of a gut-lung-skin barrier. Inflammation seems to involve common features in these tissues; therefore, analyzing the similarities and differences in the modulation of its biomarkers can yield significant data promoting a better understanding of the particularities of specific signaling pathways and cellular effects. Cannabinoids are well known for a wide array of beneficial effects, including anti-inflammatory properties. This paper aims to explore the effects of natural and synthetic cannabinoids, including the components of the endocannabinoid system, in relation to the inflammation of the gut-lung-skin barrier epithelia. Recent advancements in the use of cannabinoids as anti-inflammatory substances in various disorders of the gut, lungs and skin are detailed. Some studies have reported mixed or controversial results, and these have also been addressed in our paper.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| |
Collapse
|
5
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
6
|
Amoo M, Henry J, Pender N, Brennan P, Campbell M, Javadpour M. Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochir (Wien) 2021; 163:1457-1467. [PMID: 33404877 DOI: 10.1007/s00701-020-04670-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid haemorrhage is associated with significant morbidity and mortality due to the myriad of complications contributing to early brain injury and delayed cerebral ischaemia. There is increasing interest in the exploration of the association between blood-brain barrier integrity and risks of delayed cerebral ischaemia and poor outcomes. Despite recent advances in cerebral imaging, radiographic imaging of blood-brain barrier disruption, as a biomarker for outcome prediction, has not been adopted in clinical practice. METHODS We performed a narrative review by searching for articles describing molecular changes or radiological identification of changes in BBB permeability following subarachnoid haemorrhage (SAH) on MEDLINE. Preclinical studies were analysed if reported structural changes and clinical studies were included if they investigated for radiological markers of BBB disruption and its correlation with delayed cerebral ischaemia. RESULTS There is ample preclinical evidence to suggest that there are structural changes in BBB permeability following SAH. The available clinical literature has demonstrated correlations between permeability imaging and outcomes following aneurysmal subarachnoid haemorrhage (aSAH). CONCLUSION Radiological biomarkers offer a potential non-invasive prognostication tool and may also allow early identifications of patients who may be at risk of DCI.
Collapse
|
7
|
Neutrophil Extracellular Traps may be a Potential Target for Treating Early Brain Injury in Subarachnoid Hemorrhage. Transl Stroke Res 2021; 13:112-131. [PMID: 33852132 DOI: 10.1007/s12975-021-00909-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is closely associated with poor prognosis in patients with subarachnoid hemorrhage (SAH). The purpose of this study was to investigate the role of neutrophil extracellular traps (NETs), which are important regulators of sterile inflammation, in SAH. In this study, markers of NET formation, quantified by the level of citrullinated histone H3 (CitH3), were significantly increased after SAH and correlated with SAH severity. CitH3 peaked at 12 h in peripheral blood and at 24 h in the brain. Administration of the peptidyl arginine deiminase 4 (PAD4) selective antagonist GSK484 substantially attenuated SAH-induced brain edema and neuronal injury. Moreover, the benefit of NET inhibition was also confirmed by DNAse I treatment and neutrophil depletion. Mechanistically, NETs markedly exacerbated microglial inflammation in vitro. NET formation aggravated neuroinflammation by promoting microglial activation and increased the levels of TNF-α, IL-1β, and IL-6, while inhibiting NETs demonstrated anti-inflammatory effects by decreasing the levels of these proinflammatory factors. Moreover, neurogenic pulmonary edema (NPE), a severe nonneurological complication after SAH, is associated with a high level of NET formation. However, GSK484 effectively inhibited the formation of NETs in the lungs of NPE mice, thereby preventing the diffusion of neutrophilic infiltration and attenuating the swelling of the alveolar interstitium. In conclusion, NETs promoted neuroinflammation after SAH, while pharmacological inhibition of PAD4-NETs could reduce the inflammatory damage caused by SAH. These results supported the idea that NETs might be potential therapeutic targets for SAH.
Collapse
|
8
|
Chen S, Wang Y, Wang X, He M, Zhang L, Dong Z. PKA-Dependent Membrane Surface Recruitment of CI-AMPARs Is Crucial for BCP-Mediated Protection Against Post-acute Ischemic Stroke Cognitive Impairment. Front Neurol 2020; 11:566067. [PMID: 33391143 PMCID: PMC7772322 DOI: 10.3389/fneur.2020.566067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Post-acute ischemic stroke cognitive impairment frequently occurs and seriously affects patients daily activities. Recruitment of GluA2-containing Ca2+-impermeable AMPA receptors (CI-AMPARs) to hippocampal synaptic membrane surfaces was shown to trigger synaptic plasticity. Currently, the effect of CI-AMPAR trafficking on acute ischemic stroke remains poorly understood. β-Caryophyllene (BCP) has been shown to ameliorate cognitive impairment. However, the mechanism has not been characterized. In this study, a 60-min temporary middle cerebral artery occlusion (MCAO) model was established to simulate the pathology of acute ischemic stroke. BCP reduced neurologic deficits, cerebral infarct volume, and pathological damage in MCAO mice and caused CI-AMPARs to translocate to synaptic membranes in the hippocampus; surface expression of CI-AMPARs was also decreased in MCAO mice. Furthermore, this study also showed that BCP treatment significantly activated the cAMP/PKA pathway, which is consistent with the synaptic membrane expression of CI-AMPARs. To better understand the underlying mechanisms, the PKA inhibitor H-89 was used to study the role of BCP in MCAO mice. Interestingly, H-89 treatment significantly disrupted the BCP-mediated facilitation of CI-AMPAR translocation to the synaptic membrane surface and substantially attenuated BCP-induced protection against acute ischemic stroke. Additionally, inhibition the cAMP/PKA pathway not only reduced BCP-induced inhibition of AMPAR-mediated excitatory postsynaptic currents in the hippocampal CA1 region but also decreased the effect of BCP-mediated protection against post-acute ischemic stroke cognitive impairment. Taken together, these data indicate that PKA-dependent synaptic membrane surface recruitment of CI-AMPARs is crucial for the neuroprotective effect of BCP against acute ischemic stroke and protection against post-acute ischemic stroke cognitive impairment.
Collapse
Affiliation(s)
- Sha Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacology, Chongqing Medical University, Chongqing, China.,Laboratory Sciences, Department of Clinical Biochemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuchun Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xuhui Wang
- Department of Neurosurgery, Research Institute of Surgery Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meng He
- Laboratory Sciences, Department of Clinical Biochemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lu Zhang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Dong
- Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Pan SD, Grandgirard D, Leib SL. Adjuvant Cannabinoid Receptor Type 2 Agonist Modulates the Polarization of Microglia Towards a Non-Inflammatory Phenotype in Experimental Pneumococcal Meningitis. Front Cell Infect Microbiol 2020; 10:588195. [PMID: 33251159 PMCID: PMC7674855 DOI: 10.3389/fcimb.2020.588195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Microglia initiates and sustains the inflammatory reaction that drives the pathogenesis of pneumococcal meningitis. The expression of the G-protein cannabinoid receptor type 2 (CB2) in the brain is low, but is upregulated in glial cells during infection. Its activation down-regulates pro-inflammatory processes, driving microglia towards an anti-inflammatory phenotype. CB2 agonists are therefore therapeutic candidates in inflammatory conditions like pneumococcal meningitis. We evaluated the effects of JWH-133, a specific CB2 agonist on microglial cells, inflammation, and damage driven by S. pneumoniae in vitro and in experimental pneumococcal meningitis. Materials/methods Primary mixed glial cultures were stimulated with live or heat-inactivated S. pneumoniae, or lipopolysaccharide and treated with JWH-133 or vehicle. Nitric oxide and cytokines levels were measured in the supernatant. In vivo, pneumococcal meningitis was induced by intracisternal injection of live S. pneumoniae in 11 days old Wistar rats. Animals were treated with antibiotics (Ceftriaxone, 100 mg/kg, s.c. bid) and JWH-133 (1 mg/kg, i.p. daily) or vehicle (10% Ethanol in saline, 100 µl/25g body weight) at 18 h after infection. Brains were harvested at 24 and 42 h post infection (hpi) for histological assessment of hippocampal apoptosis and cortical damage and determination of cyto/chemokines in tissue homogenates. Microglia were characterized using Iba-1 immunostaining. Inflammation in brain homogenates was determined using membrane-based antibody arrays. Results In vitro, nitric oxide and cytokines levels were significantly lowered by JWH-133 treatment. In vivo, clinical parameters were not affected by the treatment. JWH-133 significantly lowered microglia activation assessed by quantification of cell process length and endpoints per microglia. Animals treated with JWH-133 demonstrated significantly lower parenchymal levels of chemokines (CINC-1, CINC-2α/β, and MIP-3α), TIMP-1, and IL-6 at 24 hpi, and CINC-1, MIP-1α, and IL-1α at 42 hpi. Quantitative analysis of brain damage did not reveal an effect of JWH-133. Conclusions JWH-133 attenuates microglial activation and downregulates the concentrations of pro-inflammatory mediators in pneumococcal infection in vitro and in vivo. However, we didn't observe a reduction in cortical or hippocampal injury. This data provides evidence that inhibition of microglia by adjuvant CB2 agonists therapy effectively downmodulates neuroinflammation but does not reduce brain damage in experimental pneumococcal meningitis.
Collapse
Affiliation(s)
- Steven D Pan
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Zhao J, Xuan NX, Cui W, Tian BP. Neurogenic pulmonary edema following acute stroke: The progress and perspective. Biomed Pharmacother 2020; 130:110478. [PMID: 32739737 DOI: 10.1016/j.biopha.2020.110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Neurogenic pulmonary edema (NPE) following acute stroke is an acute respiratory distress syndrome (ARDS) with clinical characteristics that include acute onset, apparent pulmonary interstitial fluid infiltration and rapid resolution. The pathological process of NPE centers on sympathetic stimulation and fulminant release of catecholamines, which cause contraction of resistance vessels. Elevated systemic resistance forces fluid into pulmonary circulation, while pulmonary circulation overload induces pulmonary capillary pressure that elevates, and in turn damages the alveolar capillary barrier. Damage to the alveolar capillary barrier leads to pulmonary ventilation disorder, blood perfusion disorder and oxygenation disorder. Eventually, NPE will cause post-stroke patients' prognosis to further deteriorate. At present, we lack specific biological diagnostic indicators and a meticulously unified diagnostic criterion, and this results in a situation in which many patients are not recognized quickly and/or diagnosed accurately. There are no drugs that are effective against NPE. Therefore, understanding how to diagnose NPE early by identifying the risk factors and how to apply appropriate treatment to avoid a deteriorating prognosis are important scientific goals. We will elaborate the progress of NPE after acute stroke in terms of its pathophysiological mechanisms, etiology, epidemiology, clinical diagnosis and early prediction, comprehensive treatment strategies, and novel drug development. We also propose our own thinking and prospects regarding NPE.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Nan-Xia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Bao-Ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
11
|
Reddy V, Grogan D, Ahluwalia M, Salles ÉL, Ahluwalia P, Khodadadi H, Alverson K, Nguyen A, Raju SP, Gaur P, Braun M, Vale FL, Costigliola V, Dhandapani K, Baban B, Vaibhav K. Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 2020; 11:217-250. [PMID: 32549916 PMCID: PMC7272537 DOI: 10.1007/s13167-020-00203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of "personalized medicine" as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.
Collapse
Affiliation(s)
- Vamsi Reddy
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Dayton Grogan
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Katelyn Alverson
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Andy Nguyen
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Srikrishnan P. Raju
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Brown University, Providence, RI USA
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, GA USA
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
| | - Fernando L. Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | | | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
12
|
Tarique AA, Evron T, Zhang G, Tepper MA, Morshed MM, Andersen ISG, Begum N, Sly PD, Fantino E. Anti-inflammatory effects of lenabasum, a cannabinoid receptor type 2 agonist, on macrophages from cystic fibrosis. J Cyst Fibros 2020; 19:823-829. [PMID: 32387042 DOI: 10.1016/j.jcf.2020.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lenabasum is an oral synthetic cannabinoid receptor type 2 agonist previously shown to reduce the production of key airway pro-inflammatory cytokines known to play a role in cystic fibrosis (CF). In a double-blinded, randomized, placebo-control phase 2 study, lenabasum lowered the rate of pulmonary exacerbation among patients with CF. The present study was undertaken to investigate anti-inflammatory mechanisms of lenabasum exhibits in CF macrophages. METHODS We used monocyte-derived macrophages (MDMs) from healthy donors (n = 15), MDMs with CFTR inhibited with C-172 (n = 5) and MDMs from patients with CF (n = 4). Monocytes were differentiated to macrophages and polarized into classically activated (M1) macrophages by LPS or alternatively activated (M2) macrophages by IL-13 in presence or absence of lenabasum. RESULTS Lenabasum had no effect on differentiation, polarization and function of macrophages from healthy individuals. However, in CF macrophages lenabasum downregulated macrophage polarization into the pro-inflammatory M1 phenotype and secretion of the pro-inflammatory cytokines IL-8 and TNF-α in a dose-dependent manner. An improvement in phagocytic activity was also observed following lenabasum treatment. Although lenabasum did not restore the impaired polarization of anti-inflammatory M2 macrophage, it reduced the levels of IL-13 and enhanced the endocytic function of CF MDMs. The effects of lenabasum on MDMs with CFTR inhibited by C-172 were not as obvious. CONCLUSION In CF macrophages lenabasum modulates macrophage polarization and function in vitro in a way that would reduce inflammation in vivo. Further studies are warranted to determine the link between activating the CBR2 receptor and CFTR.
Collapse
Affiliation(s)
- Abdullah A Tarique
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Tama Evron
- Corbus Pharmaceuticals, Inc., Norwood, MA, USA
| | | | | | - Mohammed M Morshed
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Isabella S G Andersen
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Nelufa Begum
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| | - Peter D Sly
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia.
| | - Emmanuelle Fantino
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Li Y, Bian F, Sun X, Dey SK. Mice Missing Cnr1 and Cnr2 Show Implantation Defects. Endocrinology 2019; 160:938-946. [PMID: 30776303 PMCID: PMC6435011 DOI: 10.1210/en.2019-00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Cannabinoid/endocannabinoid signaling is primarily mediated by cannabinoid receptor type 1 (CB1; encoded by Cnr1) and/or type 2 (CB2; encoded by Cnr2). Here, we show that Cnr1-/-Cnr2-/- mice are subfertile as a result of compromised implantation. Upon implantation, the epithelium is smooth and adhered to the blastocyst trophectoderm within the implantation chamber (crypt) in wild-type mice, whereas the epithelium in Cnr1-/-Cnr2-/- mice is ruffled, which compromises appropriate blastocyst-uterine interactions. The suboptimal implantation leads to higher incidence of pregnancy failure in Cnr1-/-Cnr2-/- mice. Histological analysis revealed heightened edema around the implantation chamber in these deleted females. With the use of a reporter mouse line, we observed that CB2 is present on endothelial cells of uterine blood vessels, and its absence leads to blood vessel leakage during implantation. These results suggest that appropriately regulated uterine edema is important to optimal implantation.
Collapse
MESH Headings
- Animals
- Embryo Implantation/genetics
- Female
- Infertility, Female/genetics
- Infertility, Female/metabolism
- Mice
- Mice, Knockout
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/physiology
- Uterus/metabolism
Collapse
Affiliation(s)
- Yingju Li
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Fenghua Bian
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Correspondence: Sudhansu K. Dey, PhD, or Xiaofei Sun, PhD, Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, MLC 7045, 3333 Burnet Avenue, Cincinnati, Ohio 45229. E-mail: or
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Correspondence: Sudhansu K. Dey, PhD, or Xiaofei Sun, PhD, Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, MLC 7045, 3333 Burnet Avenue, Cincinnati, Ohio 45229. E-mail: or
| |
Collapse
|
14
|
González-Mariscal L, Raya-Sandino A, González-González L, Hernández-Guzmán C. Relationship between G proteins coupled receptors and tight junctions. Tissue Barriers 2018; 6:e1414015. [PMID: 29420165 DOI: 10.1080/21688370.2017.1414015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tight junctions (TJs) are sites of cell-cell adhesion, constituted by a cytoplasmic plaque of molecules linked to integral proteins that form a network of strands around epithelial and endothelial cells at the uppermost portion of the lateral membrane. TJs maintain plasma membrane polarity and form channels and barriers that regulate the transit of ions and molecules through the paracellular pathway. This structure that regulates traffic between the external milieu and the organism is affected in numerous pathological conditions and constitutes an important target for therapeutic intervention. Here, we describe how a wide array of G protein-coupled receptors that are activated by diverse stimuli including light, ions, hormones, peptides, lipids, nucleotides and proteases, signal through heterotrimeric G proteins, arrestins and kinases to regulate TJs present in the blood-brain barrier, the blood-retinal barrier, renal tubular cells, keratinocytes, lung and colon, and the slit diaphragm of the glomerulus.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Arturo Raya-Sandino
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Laura González-González
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Christian Hernández-Guzmán
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| |
Collapse
|
15
|
Nastasovic T, Milakovic B, Marinkovic JE, Grujicic D, Stosic M. Could cardiac biomarkers predict neurogenic pulmonary edema in aneurysmal subarachnoid hemorrhage? Acta Neurochir (Wien) 2017; 159:705-712. [PMID: 28138770 DOI: 10.1007/s00701-017-3091-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neurogenic pulmonary edema (NPE) is a clinical syndrome characterized by the acute onset of pulmonary edema after a significant central nervous system (CNS) insult. NPE occurs as a result of release of catecholamines into the blood immediately after aneurysm rupture. The aim of this study is to investigate the connection between the value of cardiac biomarkers on admission and incidence of NPE in patients with aneurysmal subarachnoid hemorrhage (SAH). METHODS A total of 262 SAH patients (162 women, 100 men) were prospectively included in the study. Clinical characteristics, electrocardiographic (ECG) changes, serum cardiac and inflammatory biomarkers were measured on admission and on the day of development of NPE. These data were analyzed in order to predict the development NPE. RESULTS Nineteen patients (7.25%) developed NPE. Comparison revealed that patients who subsequently developed NPE, sustained more severe SAH. Cardiac damage was more severe in these patients, as represented by significantly higher mean values of all examined cardiac biomarkers (P = 0.000), except for troponin I value that was significantly lower (P = 0.000). Multivariate regression analysis revealed that elevated troponin I (OR, 4.980; 95% CI, 1.27-19.49; P = 0.021) and white blood cell count (OR, 22.195; 95% CI, 3.99-123.50; P = 0.000) are predictors of NPE. CONCLUSIONS Significantly higher values of cardiac biomarkers were observed in SAH patients complicated with NPE. Elevated values of cardiac biomarkers appear to play an active role in prediction of NPE, although white blood cell count may be involved in the prediction of NPE. There is an influence of SAH therapy on predictors of NPE.
Collapse
|
16
|
Tao C, Wang J, Hu X, Ma J, Li H, You C. Clinical Value of Neutrophil to Lymphocyte and Platelet to Lymphocyte Ratio After Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2016; 26:393-401. [DOI: 10.1007/s12028-016-0332-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs. Front Pharmacol 2016; 7:317. [PMID: 27695418 PMCID: PMC5023687 DOI: 10.3389/fphar.2016.00317] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC Canada
| |
Collapse
|