1
|
Tagaya M, Murataka T, Okano S, Handa H, Takahashi S. Comparison of complement consumption and platelet accumulation between membrane oxygenators coated with a polymer or heparin. Perfusion 2024; 39:1143-1151. [PMID: 37216953 DOI: 10.1177/02676591231177912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The membrane oxygenator in extracorporeal circulation circuits is coated with acrylate-copolymer (ACP) or immobilized heparin (IHP) to enhance hemocompatibility. To evaluate the relative features of both coatings, we compared blood components circulated in the circuits with ACP-and IHP-coated membranes in vitro using whole human blood. METHODS Whole human blood was heparinized and circulated in two experimental circuits with an ACP-coated reservoir, tubes, and an ACP- or IHP-coated membrane. Platelet (PLT) counts and the amount of total protein (TP), complement component 3 (C3), and complement component 4 (C4) were measured at 0, 8, 16, 24, and 32 h in each experiment (n = 5). RESULTS The PLT count at 0-h circulation was lower in the IHP-coated than in the ACP-coated circuits (p = 0.034); however, no significant difference was observed at other time points. Reduction in TP at 8-h and 16-h circulation and in C3 at 32-h circulation was lesser in the ACP-coated than in the IHP-coated circuits (p = 0.004, 0.034, and 0.027, respectively); reduction in TP and C3 at other time points and C4 at each time point was not significantly different. There were significant interactions between coating type and circulation duration in the PLT, TP, and C3 transitions (p = 0.008, 0.020, and 0.043, respectively). CONCLUSIONS Our findings suggest that ACP-coated membranes can prevent the initial drop in PLT count and C3 consumption over 32 h, whereas IHP-coated membranes could not prevent this drop in extracorporeal circulation. Therefore, ACP-coated membranes are suitable for short- and long-term extracorporeal life support.
Collapse
Affiliation(s)
- Masashi Tagaya
- Department of Medical Engineering, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Takuo Murataka
- Department of Medical Engineering, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Shinya Okano
- Department of Medical Engineering, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Hiroki Handa
- Department of Medical Engineering, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Shunsuke Takahashi
- Department of Nephrology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| |
Collapse
|
2
|
Ong J, Zarnegar A, Selvam A, Driban M, Chhablani J. The Complement System as a Therapeutic Target in Retinal Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:945. [PMID: 38929562 PMCID: PMC11205777 DOI: 10.3390/medicina60060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Arman Zarnegar
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amrish Selvam
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Matthew Driban
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Vonbrunn E, Büttner-Herold M, Amann K, Daniel C. Complement Inhibition in Kidney Transplantation: Where Are We Now? BioDrugs 2023; 37:5-19. [PMID: 36512315 PMCID: PMC9836999 DOI: 10.1007/s40259-022-00567-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal disease. Although progress has been made in the field of transplantation medicine in recent decades in terms of surgical techniques and immunosuppression, long-term organ survival remains a challenge. Also, for reasons of organ shortage, there is an unmet need for new therapeutic approaches to improve the long-term survival of transplants. There is increasing evidence that the complement system plays a crucial role in various pathological events after transplantation, including ischemia/reperfusion injury as well as rejection episodes. The complement system is part of the innate immune system and plays a crucial role in the defense against pathogens but is also involved in tissue homeostasis. However, the tightly regulated complement system can become dysregulated or activated by non-infectious stimuli, then targeting the organism's own cells and leading to inflammatory tissue damage that exacerbates injury. In this review, we will highlight the role of the complement system after transplantation and discuss ongoing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Xiao K, Zhang S, Li C. The complement system and complement-like factors in sea cucumber. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104511. [PMID: 36029917 DOI: 10.1016/j.dci.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The complement system is an important part of innate immunity and plays an essential role in immune responses. Complement system consists of a series of proteins, its activation results in opsonization and phagocytosis of pathogens. Although the complement system has been studied extensively in vertebrates, considerably less is known about complement in invertebrates, especially in sea cucumber. Here, we reviewed the complement-like factors including Component 3 (C3), Complement factor B (Bf), Mannan-binding lectin (MBL) and globular Complement component 1q Receptor (gC1qR), which had been found in the complement system of sea cucumber. Furthermore, we compared the features of complement components among marine invertebrates and described the evolution of sea cucumber complement system obviously. This review can offer theoretical basis for disease control of the sea cucumber and will provide new insights into immune system of marine invertebrates. Meantime, the complete framework of sea cucumber complement may benefit the aquaculture industry.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Siyuan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
5
|
Nielsen TL, Pilely K, Lund KP, Warming PE, Plesner LL, Iversen KK, Garred P. Hemodialysis leads to plasma depletion of lectin complement pathway initiator molecule ficolin-2. Hemodial Int 2021; 25:479-488. [PMID: 34132045 DOI: 10.1111/hdi.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/22/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This study aimed to investigate changes in complement system-related molecules in patients undergoing hemodialysis. METHODS Patients >18 years of age on maintenance hemodialysis were included. Using enzyme-linked immunosorbent assays (ELISA) methods complement related molecules ficolin-1, ficolin-2, ficolin-3 mannose-binding lectin, long pentraxin 3, complement activation products C3c, and complement activation potentials were measured before and after a single hemodialysis treatment. All patients were dialyzed with synthetic high flux filters >1.6 m2 , respectively, Polyamix and Polysulfone, and the Kt/V was maintained >1.3. FINDINGS Three hundred and four patients were included. There was a modest decrease in plasma level of ficolin-1 (p < 0.001). Ficolin-2 was virtually depleted with median 3.9 (interquartile range [IQR]: 2.6-6.1, range 0.3-13.5) μg/ml before dialysis to median 0.0 (IQR: 0.0-0.5, range 0.0-5.5) μg/ml after dialysis (p < 0.001). No significant difference before and after hemodialysis was seen for mannose-binding lectin and long pentraxin 3 (p > 0.05). In a random subgroup of 160 patients ficolin-2-binding, ficolin-3-mediated lectin pathway capacity and classical pathway capacity were significantly decreased due to hemodialysis. The complement capacity of the alternative pathway was increased after hemodialysis (p = 0.0101), while mannose-binding lectin-mediated lectin pathway capacity was unaltered (p = 0.79). There was an increase in the complement activation product C3c (p < 0.0001), while the concentration of total C4 and C3 did not change (p > 0.158). Multivariate Cox proportional hazard analyses showed an increased risk for all-cause mortality with increasing ficolin-2 (p = 0.002) after hemodialysis. DISCUSSION Plasma ficolin-2 was virtually depleted from the circulation after hemodialysis. However, elevated plasma ficolin-2 levels after hemodialysis was independently associated with increased mortality.
Collapse
Affiliation(s)
- Ture Lange Nielsen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Herlev Hospital, Herlev, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Kit P Lund
- Laboratory of Molecular Medicine, Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Skinner SC, Derebail VK, Poulton CJ, Bunch DC, Roy-Chaudhury P, Key NS. Hemodialysis-Related Complement and Contact Pathway Activation and Cardiovascular Risk: A Narrative Review. Kidney Med 2021; 3:607-618. [PMID: 34401728 PMCID: PMC8350825 DOI: 10.1016/j.xkme.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Individuals receiving long-term hemodialysis are at increased risk of developing cardiovascular disease (CVD). Traditional cardiovascular risk factors do not fully explain the high CVD risk in this population. During hemodialysis, blood interacts with the biomaterials of the hemodialysis circuit. This interaction can activate the complement system and the factor XII-driven contact system. FXII activation triggers both the intrinsic pathway of coagulation and the kallikrein-kinin pathway, resulting in thrombin and bradykinin production, respectively. The complement system plays a key role in the innate immune response, but also contributes to the pathogenesis of numerous disease states. Components of the complement pathway, including mannose binding lectin and C3, are associated with CVD risk in people with end-stage kidney disease (ESKD). Both the complement system and the factor XII-driven contact coagulation system mediate proinflammatory and procoagulant responses that could contribute to or accelerate CVD in hemodialysis recipents. This review summarizes what is already known about hemodialysis-mediated activation of the complement system and in particular the coagulation contact system, emphasizing the potential role these systems play in the identification of new biomarkers for CVD risk stratification and the development of potential therapeutic targets or innovative therapies that decrease CVD risk in ESKD patients.
Collapse
Affiliation(s)
- Sarah C. Skinner
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Vimal K. Derebail
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Caroline J. Poulton
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Donna C. Bunch
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Prabir Roy-Chaudhury
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
- WG (Bill) Hefner VA Medical Center, Salisbury, NC
| | - Nigel S. Key
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
7
|
Hevey R, Pouw RB, Harris C, Ricklin D. Sweet turning bitter: Carbohydrate sensing of complement in host defence and disease. Br J Pharmacol 2020; 178:2802-2822. [PMID: 33140840 DOI: 10.1111/bph.15307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system plays a major role in threat recognition and in orchestrating responses to microbial intruders and accumulating debris. This immune surveillance is largely driven by lectins that sense carbohydrate signatures on foreign, diseased and healthy host cells and act as complement activators, regulators or receptors to shape appropriate immune responses. While carbohydrate sensing protects our bodies, misguided or impaired recognition can contribute to disease. Moreover, pathogenic microbes have evolved to evade complement by mimicking host signatures. While complement is recognized as a disease factor, we only slowly start to appreciate the role of carbohydrate interactions in the underlying processes. A better understanding of complement's sweet side will contribute to a better description of disease mechanisms and enhanced diagnostic and therapeutic options. This review introduces the key components in complement-mediated carbohydrate sensing, discusses their role in health and disease, and touches on the potential effects of carbohydrate-related disease intervention. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Claire Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Mu L, Yin X, Wu H, Han K, Guo Z, Ye J. MAp34 Regulates the Non-specific Cell Immunity of Monocytes/Macrophages and Inhibits the Lectin Pathway of Complement Activation in a Teleost Fish. Front Immunol 2020; 11:1706. [PMID: 32903484 PMCID: PMC7435015 DOI: 10.3389/fimmu.2020.01706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
The lectin pathway of the complement system is one of the main components of innate immunity, which plays a pivotal role in the defense against infectious microorganisms and maintains immune homeostasis. However, its control mechanisms remain unclear in teleost fish. In this study, we described the identification and functional characterization of a mannose-binding lectin associated protein MAp34 (OnMAp34) from Nile tilapia (Oreochromis niloticus) at molecular, cellular, and protein levels. The open reading frame (ORF) of OnMAp34 is 918 bp of nucleotide sequence encoding a polypeptide of 305 amino acids. The deduced amino acid sequence has three characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB) and one epidermal growth factor domain (EGF). Expression analysis revealed that the OnMAp34 was highly expressed in the liver and widely existed in other examined tissues. In addition, the mRNA and protein expression levels of OnMAp34 were remarkably altered upon infection with Streptococcus agalactiae and Aeromonas hydrophila in vivo and in vitro. Further, we found that the OnMAp34 could participate in the non-specific cellular immune defense, including the regulation of inflammation, migration, and enhancement of phagocytosis of monocytes/macrophages. Moreover, the OnMAp34 could compete with OnMASPs to combine OnMBL and inhibit the lectin pathway of complement activation. Overall, our results provide new insights into the understanding of MAp34 as a potent regulator in the lectin complement pathway and non-specific cell immunity in an early vertebrate.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Hairong Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Kailiang Han
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Molecular Mechanisms of Premature Aging in Hemodialysis: The Complex Interplay Between Innate and Adaptive Immune Dysfunction. Int J Mol Sci 2020; 21:ijms21103422. [PMID: 32408613 PMCID: PMC7279398 DOI: 10.3390/ijms21103422] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hemodialysis (HD) patient are known to be susceptible to a wide range of early and long-term complication such as chronic inflammation, infections, malnutrition, and cardiovascular disease that significantly affect the incidence of mortality. A large gap between the number of people with end-stage kidney disease (ESKD) and patients who received kidney transplantation has been identified. Therefore, there is a huge need to explore the underlying pathophysiology of HD complications in order to provide treatment guidelines. The immunological dysregulation, involving both the innate and adaptive response, plays a crucial role during the HD sessions and in chronic, maintenance treatments. Innate immune system mediators include the dysfunction of neutrophils, monocytes, and natural killer (NK) cells with signaling mediated by NOD-like receptor P3 (NLRP3) and Toll-like receptor 4 (TLR4); in addition, there is a significant activation of the complement system that is mediated by dialysis membrane-surfaces. These effectors induce a persistent, systemic, pro-inflammatory, and pro-coagulant milieu that has been described as inflammaging. The adaptive response, the imbalance in the CD4+/CD8+ T cell ratio, and the reduction of Th2 and regulatory T cells, together with an altered interaction with B lymphocyte by CD40/CD40L, have been mainly implicated in immune system dysfunction. Altogether, these observations suggest that intervention targeting the immune system in HD patients could improve morbidity and mortality. The purpose of this review is to expand our understanding on the role of immune dysfunction in both innate and adaptive response in patients undergoing hemodialysis treatment.
Collapse
|
10
|
Chen DD, Yao YY, Zhang YA. Identification and characterization of two mannan-binding lectin associated proteins in lectin complement pathway of grass carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103497. [PMID: 31518591 DOI: 10.1016/j.dci.2019.103497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The lectin pathway of complement activation is an important component of the innate immune response, which must be tightly controlled to maintain immune homeostasis. However, its control mechanisms have not been investigated in detail in bony fish. In this study, we identified and characterized two novel, phylogenetically conserved mannan-binding lectin (MBL)-associated proteins (MAps) of grass carp (Ctenopharyngodon idella), CiMAp27 and CiMAp39, which were truncated, alternatively-spliced forms of grass carp MBL-associated serine proteases (MASPs), CiMASP1 and CiMASP2, respectively. Gene expression profiling showed that both CiMAp27 and CiMAp39 were upregulated by low doses of Aeromonas hydrophila, and inhibited by high doses, which lead to the inference that these genes acted as immune factors in antibacterial defense. Sequence analysis showed that CiMAp27 lack a catalytic domain but retains two domains (CUB1-EGF) involved in the association with MBL, while CiMAp39 retained four domains (CUB1-EGF-CUB2-CCP1). Not only the two CiMASPs but also the CiMAps were detected in grass carp serum. Furthermore, both recombinant CiMASPs (rCiMASPs) and recombinant rCiMAps (rCiMAps) interacted with recombinant MBL and the two CiMAps competed with CiMASPs for binding to MBL, and hence inhibited downstream C4 binding. These results indicated that CiMAps acted as competitive inhibitors in the lectin complement pathway of grass carp.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Yuan-Yuan Yao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
11
|
Gorbet M, Sperling C, Maitz MF, Siedlecki CA, Werner C, Sefton MV. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater 2019; 94:25-32. [PMID: 31226478 DOI: 10.1016/j.actbio.2019.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/03/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Following protein adsorption/activation which is the first step after the contact of material surfaces and whole blood (part 2), fibrinogen is converted to fibrin and platelets become activated and assembled in the form of a thrombus. This thrombus formation is the key feature that needs to be minimized in the creation of materials with low thrombogenicity. Further aspects of blood compatibility that are important on their own are complement and leukocyte activation which are also important drivers of thrombus formation. Hence this review summarizes the state of knowledge on all of these cascades and cells and their interactions. For each cascade or cell type, the chapter distinguishes statements which are in widespread agreement from statements where there is less of a consensus. STATEMENT OF SIGNIFICANCE: This paper is part 3 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Maud Gorbet
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Christopher A Siedlecki
- Departments of Surgery and Bioengineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Ajona D, Ortiz-Espinosa S, Pio R, Lecanda F. Complement in Metastasis: A Comp in the Camp. Front Immunol 2019; 10:669. [PMID: 31001273 PMCID: PMC6457318 DOI: 10.3389/fimmu.2019.00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The complement system represents a pillar of the innate immune response. This system, critical for host defense against pathogens, encompasses more than 50 soluble, and membrane-bound proteins. Emerging evidence underscores its clinical relevance in tumor progression and its role in metastasis, one of the hallmarks of cancer. The multistep process of metastasis entails the acquisition of advantageous functions required for the formation of secondary tumors. Thus, targeting components of the complement system could impact not only on tumor initiation but also on several crucial steps along tumor dissemination. This novel vulnerability could be concomitantly exploited with current strategies overcoming tumor-mediated immunosuppression to provide a substantial clinical benefit in the treatment of metastatic disease. In this review, we offer a tour d'horizon on recent advances in this area and their prospective potential for cancer treatment.
Collapse
Affiliation(s)
- Daniel Ajona
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ruben Pio
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
13
|
Dasari P, Shopova IA, Stroe M, Wartenberg D, Martin-Dahse H, Beyersdorf N, Hortschansky P, Dietrich S, Cseresnyés Z, Figge MT, Westermann M, Skerka C, Brakhage AA, Zipfel PF. Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage. Front Immunol 2018; 9:1635. [PMID: 30166981 PMCID: PMC6106110 DOI: 10.3389/fimmu.2018.01635] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6–7 and SCR20. FHL-1 binds via SCRs6–7, and FHR1 via SCRs3–5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.
Collapse
Affiliation(s)
- Prasad Dasari
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Iordana A Shopova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Maria Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Hans Martin-Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Niklas Beyersdorf
- University of Würzburg, Institute for Virology and Immunobiology, Würzburg, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Stefanie Dietrich
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Zoltán Cseresnyés
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center of the University Hospital, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Kochanek DM, Ghouse SM, Karbowniczek MM, Markiewski MM. Complementing Cancer Metastasis. Front Immunol 2018; 9:1629. [PMID: 30061895 PMCID: PMC6054933 DOI: 10.3389/fimmu.2018.01629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Complement is an effector of innate immunity and a bridge connecting innate immunity and subsequent adaptive immune responses. It is essential for protection against infections and for orchestrating inflammatory responses. Recent studies have also demonstrated contribution of the complement system to several homeostatic processes that are traditionally not considered to be involved in immunity. Thus, complement regulates homeostasis and immunity. However, dysregulation of this system contributes to several pathologies including inflammatory and autoimmune diseases. Unexpectedly, studies of the last decade have also revealed that complement promotes cancer progression. Since the initial discovery of tumor promoting role of complement, numerous preclinical and clinical studies demonstrated contribution of several complement components to regulation of tumor growth through their direct interactions with the corresponding receptors on tumor cells or through suppression of antitumor immunity. Most of this work, however, focused on a role of complement in regulating growth of primary tumors. Only recently, a few studies showed that complement promotes cancer metastasis through its contribution to epithelial-to-mesenchymal transition and the premetastatic niche. This latter work has shown that complement activation and generation of complement effectors including C5a occur in organs that are target for metastasis prior to arrival of the very first tumor cells. C5a through its interactions with C5a receptor 1 inhibits antitumor immunity by activating and recruiting immunosuppressive cells from the bone marrow to the premetastatic niche and by regulating function and self-renewal of pulmonary tissue-resident alveolar macrophages. These new advancements provide additional evidence for multifaceted functions of complement in cancer.
Collapse
Affiliation(s)
- Dawn M Kochanek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Shanawaz M Ghouse
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Magdalena M Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
15
|
Kolev M, Markiewski MM. Targeting complement-mediated immunoregulation for cancer immunotherapy. Semin Immunol 2018; 37:85-97. [PMID: 29454575 PMCID: PMC5984681 DOI: 10.1016/j.smim.2018.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients.
Collapse
Affiliation(s)
- Martin Kolev
- Complement and Inflammation Research Section, DIR, NHLBI, NIH, Bethesda, MD, 20892, United States.
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
16
|
Ekdahl KN, Davoodpour P, Ekstrand-Hammarström B, Fromell K, Hamad OA, Hong J, Bucht A, Mohlin C, Seisenbaeva GA, Kessler VG, Nilsson B. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:735-744. [DOI: 10.1016/j.nano.2017.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/19/2022]
|
17
|
Poppelaars F, Faria B, Gaya da Costa M, Franssen CFM, van Son WJ, Berger SP, Daha MR, Seelen MA. The Complement System in Dialysis: A Forgotten Story? Front Immunol 2018; 9:71. [PMID: 29422906 PMCID: PMC5788899 DOI: 10.3389/fimmu.2018.00071] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
Significant advances have lead to a greater understanding of the role of the complement system within nephrology. The success of the first clinically approved complement inhibitor has created renewed appreciation of complement-targeting therapeutics. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition in renal diseases and kidney transplantation. Although, complement has been known to be activated during dialysis for over four decades, this area of research has been neglected in recent years. Despite significant progress in biocompatibility of hemodialysis (HD) membranes and peritoneal dialysis (PD) fluids, complement activation remains an undesired effect and relevant issue. Short-term effects of complement activation include promoting inflammation and coagulation. In addition, long-term complications of dialysis, such as infection, fibrosis and cardiovascular events, are linked to the complement system. These results suggest that interventions targeting the complement system in dialysis could improve biocompatibility, dialysis efficacy, and long-term outcome. Combined with the clinical availability to safely target complement in patients, the question is not if we should inhibit complement in dialysis, but when and how. The purpose of this review is to summarize previous findings and provide a comprehensive overview of the role of the complement system in both HD and PD.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
- Nephrology and Infectious Diseases Research and Development Group, University of Porto, Porto, Portugal
- Department of Nephrology, Hopsital Braga, Braga, Portugal
| | - Mariana Gaya da Costa
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Casper F. M. Franssen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Willem J. van Son
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Stefan P. Berger
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Mohamed R. Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
- Department of Nephrology, Leiden University Medical Centre, Leiden, Netherlands
| | - Marc A. Seelen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Agrawal P, Nawadkar R, Ojha H, Kumar J, Sahu A. Complement Evasion Strategies of Viruses: An Overview. Front Microbiol 2017; 8:1117. [PMID: 28670306 PMCID: PMC5472698 DOI: 10.3389/fmicb.2017.01117] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation - either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae.
Collapse
Affiliation(s)
- Palak Agrawal
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Renuka Nawadkar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Hina Ojha
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Jitendra Kumar
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| | - Arvind Sahu
- Complement Biology Laboratory, National Centre for Cell Science, Savitribai Phule Pune UniversityPune, India
| |
Collapse
|
19
|
Csuka D, Veszeli N, Varga L, Prohászka Z, Farkas H. The role of the complement system in hereditary angioedema. Mol Immunol 2017; 89:59-68. [PMID: 28595743 DOI: 10.1016/j.molimm.2017.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Hereditary angioedema (HAE) is a rare, but potentially life-threatening disorder, characterized by acute, recurring, and self-limiting edematous episodes of the face, extremities, trunk, genitals, upper airways, or the gastrointestinal tract. HAE may be caused by the deficiency of C1-inhibitor (C1-INH-HAE) but another type of the disease, hereditary angioedema with normal C1-INH function (nC1-INH-HAE) was also described. The patient population is quite heterogeneous as regards the location, frequency, and severity of edematous attacks, presenting large intra- and inter-individual variation. Here, we review the role of the complement system in the pathomechanism of HAE and also present an overview on the complement parameters having an importance in the diagnosis or in predicting the severity of HAE.
Collapse
Affiliation(s)
- Dorottya Csuka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | - Nóra Veszeli
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Lilian Varga
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Henriette Farkas
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Li MF, Li J, Sun L. CsMAP34, a teleost MAP with dual role: A promoter of MASP-assisted complement activation and a regulator of immune cell activity. Sci Rep 2016; 6:39287. [PMID: 28008939 PMCID: PMC5180248 DOI: 10.1038/srep39287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/22/2016] [Indexed: 01/28/2023] Open
Abstract
In teleost fish, the immune functions of mannan-binding lectin (MBL) associated protein (MAP) and MBL associated serine protease (MASP) are scarcely investigated. In the present study, we examined the biological properties both MAP (CsMAP34) and MASP (CsMASP1) molecules from tongue sole (Cynoglossus semilaevis). We found that CsMAP34 and CsMASP1 expressions occurred in nine different tissues and were upregulated by bacterial challenge. CsMAP34 protein was detected in blood, especially during bacterial infection. Recombinant CsMAP34 (rCsMAP34) bound C. semilaevis MBL (rCsBML) when the latter was activated by bacteria, while recombinant CsMASP1 (rCsMASP1) bound activated rCsBML only in the presence of rCsMAP34. rCsMAP34 stimulated the hemolytic and bactericidal activities of serum complement, whereas anti-CsMAP34 antibody blocked complement activities. Knockdown of CsMASP1 in C. semilaevis resulted in significant inhibition of complement activities. Furthermore, rCsMAP34 interacted directly with peripheral blood leukocytes (PBL) and enhanced the respiratory burst, acid phosphatase activity, chemotactic activity, and gene expression of PBL. These results indicate for the first time that a teleost MAP acts one hand as a regulator that promotes the lectin pathway of complement activation via its ability to recruit MBL to MASP, and other hand as a modulator of immune cell activity.
Collapse
Affiliation(s)
- Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, MI, USA
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Horváth Z, Csuka D, Vargova K, Kovács A, Leé S, Varga L, Préda I, Tóth Zsámboki E, Prohászka Z, Kiss RG. Alternative complement pathway activation during invasive coronary procedures in acute myocardial infarction and stable angina pectoris. Clin Chim Acta 2016; 463:138-144. [DOI: 10.1016/j.cca.2016.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 12/29/2022]
|
22
|
Fumagalli S, De Simoni MG. Lectin Complement Pathway and Its Bloody Interactions in Brain Ischemia. Stroke 2016; 47:3067-3073. [PMID: 27811336 DOI: 10.1161/strokeaha.116.012407] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefano Fumagalli
- From the Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria-Grazia De Simoni
- From the Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|