1
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
2
|
SNORA71A Promotes Colorectal Cancer Cell Proliferation, Migration, and Invasion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8284576. [PMID: 33083486 PMCID: PMC7559222 DOI: 10.1155/2020/8284576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Small nucleolar RNAs (snoRNAs) play a crucial role during colorectal cancer (CRC) development. The study of SNORA71A is few, and its role in CRC is unknown. This study focused on screening abnormal snoRNAs in CRC and exploring the role of key snoRNA in CRC. The expression pattern of snoRNAs in 3 CRC and 3 normal colon tissues was detected via small RNA sequencing. The six candidate snoRNAs were identified by quantitative PCR (qPCR). Subsequently, the expression level of SNORA71A was further verified through the Cancer Genome Atlas (TCGA) data analysis and qPCR. The CCK8 and transwell assays were used to detect the functional role of SNORA71A in CRC cells. The integrated analysis of snoRNA expression profile indicated that a total 107 snoRNAs were significantly differentially expressed (DE) in CRC tissues compared with normal tissues, including 45 upregulated and 62 downregulated snoRNAs. Bioinformatics analysis revealed that the DE snoRNAs were mainly implicated in "detection of chemical stimulus involved in sensory perception of smell" and "sensory perception of smell" in the biological process. The DE snoRNAs were preferentially enriched in "olfactory transduction" and "glycosphingolipid biosynthesis-ganglio series pathway." The expression of SNORA71A was upregulated in CRC tissues and cells. SNORA71A expression showed statistically significant correlations with TNM stage (P = 0.0196) and lymph node metastasis (P = 0.0189) and can serve as biomarkers for CRC. Importantly, SNORA71A significantly facilitated the CRC cell proliferation, migration, and invasion. Our findings indicate that SNORA71A screened by sequencing acted as an oncogene and promoted proliferation, migration, and invasion ability of CRC cells.
Collapse
|
3
|
Zuberi M, Mir R, Khan I, Javid J, Guru SA, Bhat M, Sumi MP, Ahmad I, Masroor M, Yadav P, Vishnubhatla S, Saxena A. The Promising Signatures of Circulating microRNA-145 in Epithelial Ovarian Cancer Patients. Microrna 2020; 9:49-57. [PMID: 30799804 DOI: 10.2174/2211536608666190225111234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Epithelial ovarian cancer continues to be a deleterious threat to women as it is asymptomatic and is typically detected in advanced stages. Cogent non-invasive biomarkers are therefore needed which are effective in apprehending the disease in early stages. Recently, miRNA deregulation has shown a promising magnitude in ovarian cancer tumorigenesis. miRNA-145(miR- 145) is beginning to be understood for its possible role in cancer development and progression. In this study, we identified the clinicopathological hallmarks altered owing to the downexpression of serum miR-145 in EOC. METHODS 70 serum samples from histopathologically confirmed EOC patients and 70 controls were collected. Total RNA from serum was isolated by Trizol method, polyadenylated and reverse transcribed into cDNA. Expression level of miR-145 was detected by miRNA qRT-PCR using RNU6B snRNA as reference. RESULTS The alliance of miR-145 profiling amongst patients and controls established itself to be conspicuous with a significant p-value (p<0.0001). A positive conglomeration (p=0.04) of miR-145 profiling was manifested with histopathological grade. Receiver Operating Characteristic (ROC) curve highlights the diagnostic potential and makes it imminent with a robust Area Under the curve (AUC). A positive correlation with the ROC curve was also noted for histological grade, FIGO stage, distant metastasis, lymph node status and survival. CONCLUSION Our results propose that miR-145 down-regulation might be a possible touchstone for disease progression and be identified as a diagnostic marker and predict disease outcome in EOC patients.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Imran Khan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Columbia, SC, United States
| | - Jamsheed Javid
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sameer Ahmad Guru
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Musadiq Bhat
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Mamta Pervin Sumi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Imtiyaz Ahmad
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Mirza Masroor
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | - Prasant Yadav
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| | | | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi-110002, India
| |
Collapse
|
4
|
Li J, Ma S, Lin T, Li Y, Yang S, Zhang W, Zhang R, Wang Y. Comprehensive Analysis of Therapy-Related Messenger RNAs and Long Noncoding RNAs as Novel Biomarkers for Advanced Colorectal Cancer. Front Genet 2019; 10:803. [PMID: 31850052 PMCID: PMC6900565 DOI: 10.3389/fgene.2019.00803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of human cancers. However, the mechanisms underlying CRC progression remained elusive. This study identified differently expressed messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and small nucleolar RNAs (snoRNAs) between pre-therapeutic biopsies and post-therapeutic resections of locally advanced CRC by analyzing a public dataset, GSE94104. We identified 427 dysregulated mRNAs, 4 dysregulated lncRNAs, and 19 dysregulated snoRNAs between pre- and post-therapeutic locally advanced CRC samples. By constructing a protein–protein interaction network and co-expressing networks, we identified 10 key mRNAs, 4 key lncRNAs, and 7 key snoRNAs. Bioinformatics analysis showed therapy-related mRNAs were associated with nucleosome assembly, chromatin silencing at recombinant DNA, negative regulation of gene expression, and DNA replication. Therapy-related lncRNAs were associated with cell adhesion, extracellular matrix organization, angiogenesis, and sister chromatid cohesion. In addition, therapy-related snoRNAs were associated with DNA replication, nucleosome assembly, and telomere organization. We thought this study provided useful information for identifying novel biomarkers for CRC.
Collapse
Affiliation(s)
- Jibin Li
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Siping Ma
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Lin
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Yanxi Li
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | | | | | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Liaoning Cancer Hospital, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Li B, Wang F, Ma C, Hao T, Geng L, Jiang H. Predictive value of IL-18 and IL-10 in the prognosis of patients with colorectal cancer. Oncol Lett 2019; 18:713-719. [PMID: 31289546 PMCID: PMC6540337 DOI: 10.3892/ol.2019.10338] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
Predictive value of serum interleukin 10 (IL-10) and interleukin 18 (IL-18) expression in patients with colorectal cancer (CRC) was investigated. This study retrospectively analyzed the medical records of 146 patients with CRC admitted to the Binzhou Medical University Hospital as the study group, and collected the physical examination data of 82 volunteers as the control group. The expression levels of IL-10 and IL-18 in the serum were measured by enzyme-linked immunosorbent assay (ELISA). A 60-month follow-up on patients in the study group was performed to make records of their prognosis. The expressions of IL-10 and IL-18 were statistically different in patients with different Dukes stages, tumor sizes, histological grades, and different situations of distant metastasis of cancer cells (P<0.05); with a gradual downward trend following the operation. The expression levels of serum IL-10 and IL-18 in the study group 7 days after the operation were lower than the levels before the operation (P<0.05), and the expression levels of IL-10 and IL-18 of patients in the study group on the day of discharge were lower than the expression levels 7 days after the operation (P<0.05). The expressions of IL-10 and IL-18 of patients with reoccurred CRC after the operation were significantly higher than that of patients without recurrence of CRC in the study group (P<0.05). Thus, IL-10 and IL-18 are highly expressed in the serum of CRC patients, which makes IL-10 and IL-18 useful to serve as indicators to determine the prognosis of CRC patients. The lower the expression levels of IL-10 and IL-18, the lower the cancer recurrence rate, the better the prognosis and the longer the survival time.
Collapse
Affiliation(s)
- Baosong Li
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Fengxia Wang
- Department of Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Chong Ma
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Tao Hao
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Longlong Geng
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Hong Jiang
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
6
|
Terbuch A, Adiprasito JB, Stiegelbauer V, Seles M, Klec C, Pichler GP, Resel M, Posch F, Lembeck AL, Stöger H, Szkandera J, Pummer K, Bauernhofer T, Hutterer GC, Gerger A, Stotz M, Pichler M. MiR-371a-3p Serum Levels Are Increased in Recurrence of Testicular Germ Cell Tumor Patients. Int J Mol Sci 2018; 19:ijms19103130. [PMID: 30321995 PMCID: PMC6213366 DOI: 10.3390/ijms19103130] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Metastatic testicular germ cell tumors (TGCTs) are a potentially curable disease by administration of risk-adapted cytotoxic chemotherapy. Nevertheless, a disease-relapse after curative chemotherapy needs more intensive salvage chemotherapy and significantly worsens the prognosis of TGCT patients. Circulating tumor markers (β-subunit of human chorionic gonadotropin (β-HCG), alpha-Fetoprotein (AFP), and Lactate Dehydrogenase (LDH)) are frequently used for monitoring disease recurrence in TGCT patients, though they lack diagnostic sensitivity and specificity. Increasing evidence suggests that serum levels of stem cell-associated microRNAs (miR-371a-3p and miR-302/367 cluster) are outperforming the traditional tumor markers in terms of sensitivity to detect newly diagnosed TGCT patients. The aim of this study was to investigate whether these miRNAs are also informative in detection of disease recurrence in TGCT patients after curative first line therapy. For this purpose, we measured the serum levels of miR-371a-3p and miR-367 in 52 samples of ten TGCT patients at different time points during disease relapse and during salvage chemotherapy. In our study, miR-371a-3p levels in serum samples with proven disease recurrence were 13.65 fold higher than levels from the same patients without evidence of disease (p = 0.014). In contrast, miR-367 levels were not different in these patient groups (p = 0.985). In conclusion, miR-371a-3p is a sensitive and potentially novel biomarker for detecting disease relapse in TGCT patients. This promising biomarker should be investigated in further large prospective trials.
Collapse
Affiliation(s)
- Angelika Terbuch
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK.
| | - Jan B Adiprasito
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, 8036 Graz, Austria.
| | - Verena Stiegelbauer
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, 8036 Graz, Austria.
| | - Maximilian Seles
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Christiane Klec
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, 8036 Graz, Austria.
| | - Georg P Pichler
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Margit Resel
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Florian Posch
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, 8036 Graz, Austria.
| | - Anna L Lembeck
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Herbert Stöger
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Joanna Szkandera
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Karl Pummer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Thomas Bauernhofer
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Center for Biomarker Research in Medicine (CBmed), 8036 Graz, Austria.
| | - Georg C Hutterer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Armin Gerger
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Center for Biomarker Research in Medicine (CBmed), 8036 Graz, Austria.
| | - Michael Stotz
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Martin Pichler
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Hou N, Guo Z, Zhao G, Jia G, Luo B, Shen X, Bai Y. Inhibition of microRNA-21-3p suppresses proliferation as well as invasion and induces apoptosis by targeting RNA-binding protein with multiple splicing through Smad4/extra cellular signal-regulated protein kinase signalling pathway in human colorectal cancer HCT116 cells. Clin Exp Pharmacol Physiol 2018. [PMID: 29542167 DOI: 10.1111/1440-1681.12931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MicroRNA-21-3p (miR-21-3p), the passenger strand of pre-mir-21, has been found to be high-expressing in various cancers and to be associated with tumour malignancy, which is proposed as a novel focus in malignant tumours. Colorectal cancer (CRC), currently known as one of the most prevalent malignancy, is a leading cause of cancer death. This study aimed to investigate the key role of miR-21-3p in CRC by inhibiting its expression using transfection with miR-21-3p inhibitors into human CRC HCT116 cells. Results showed that the expression of miR-21-3p was higher than other CRC cells used in the study including Lovo, HT29, Colo320 and SW480 cells, inhibition of which suppressed the proliferation and induced cell cycle arrest in HCT116 cells. Besides, transfection with miR-21-3p inhibitors also attenuated cell migration and invasion, and induced apoptosis as well. Moreover, luciferase assay confirmed RBPMS as a direct target of miR-21-3p in HCT116 cells. Further, miR-21-3p inhibitors increased the nuclear accumulation of Smad4 and reduced phosphorylation of ERK. Interestingly, we found that silence of RBPMS using RNA interference (siRNA) not only elevated the cell viability but also increased the phosphorylation of ERK and reversed the nuclear accumulation of Smad4 induced by miR-21-3p inhibitors in HCT116 cells. Data suggest that inhibition of miR-21-3p suppresses cell proliferation, invasion as well as migration and induces apoptosis by directly targeting RBPMS through Smad4/ERK signalling pathway in HCT116 cells. Our study demonstrates miR-21-3p as a potent target for suppressing tumour progression of CRC which may have implications in CRC therapy in the future.
Collapse
Affiliation(s)
- Nengyi Hou
- Departments of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhiyi Guo
- Departments of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Gaoping Zhao
- Departments of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Guiqing Jia
- Departments of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Bin Luo
- Departments of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaogang Shen
- Departments of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yifeng Bai
- Departments of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
8
|
Samuel P, Fabbri M, Carter DRF. Mechanisms of Drug Resistance in Cancer: The Role of Extracellular Vesicles. Proteomics 2017; 17. [PMID: 28941129 DOI: 10.1002/pmic.201600375] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Drug resistance remains a major barrier to the successful treatment of cancer. The mechanisms by which therapeutic resistance arises are multifactorial. Recent evidence has shown that extracellular vesicles (EVs) play a role in mediating drug resistance. EVs are small vesicles carrying a variety of macromolecular cargo released by cells into the extracellular space and can be taken up into recipient cells, resulting in transfer of cellular material. EVs can mediate drug resistance by several mechanisms. They can serve as a pathway for sequestration of cytotoxic drugs, reducing the effective concentration at target sites. They can act as decoys carrying membrane proteins and capturing monoclonal antibodies intended to target receptors at the cell surface. EVs from resistant tumor cells can deliver mRNA, miRNA, long noncoding RNA, and protein inducing resistance in sensitive cells. This provides a new model for how resistance that arises can then spread through a heterogeneous tumor. EVs also mediate cross-talk between cancer cells and stromal cells in the tumor microenvironment, leading to tumor progression and acquisition of therapeutic resistance. In this review, we will describe what is known about how EVs can induce drug resistance, and discuss the ways in which EVs could be used as therapeutic targets or diagnostic markers for managing cancer treatment. While further characterization of the vesiculome and the mechanisms of EV function are still required, EVs offer an exciting opportunity in the fight against cancer.
Collapse
Affiliation(s)
- Priya Samuel
- Department of Biological and Medical Sciences Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Muller Fabbri
- Department of Pediatrics and Microbiology & Molecular Immunology University of Southern California-Keck School of Medicine Norris Comprehensive Cancer Center Children's Center for Cancer and Blood Diseases, Children's Hospital, Los Angeles, CA, USA
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
9
|
Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog 2017; 13:e1006440. [PMID: 28704539 PMCID: PMC5509344 DOI: 10.1371/journal.ppat.1006440] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus (Sg) has long been known to have a strong association with colorectal cancer (CRC). This knowledge has important clinical implications, and yet little is known about the role of Sg in the development of CRC. Here we demonstrate that Sg promotes human colon cancer cell proliferation in a manner that depends on cell context, bacterial growth phase and direct contact between bacteria and colon cancer cells. In addition, we observed increased level of β-catenin, c-Myc and PCNA in colon cancer cells following incubation with Sg. Knockdown or inhibition of β-catenin abolished the effect of Sg. Furthermore, mice administered with Sg had significantly more tumors, higher tumor burden and dysplasia grade, and increased cell proliferation and β-catenin staining in colonic crypts compared to mice receiving control bacteria. Finally, we showed that Sg is present in the majority of CRC patients and is preferentially associated with tumor compared to normal tissues obtained from CRC patients. These results taken together establish for the first time a tumor-promoting role of Sg that involves specific bacterial and host factors and have important clinical implications.
Collapse
|
10
|
Yan L, Qiu J, Yao J. Downregulation of microRNA-30d promotes cell proliferation and invasion by targeting LRH-1 in colorectal carcinoma. Int J Mol Med 2017; 39:1371-1380. [PMID: 28440426 PMCID: PMC5428944 DOI: 10.3892/ijmm.2017.2958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
The aberrant expression of miR-30d has been reported in several types of human malignancies. However, its biological function in colorectal cancer (CRC) remains largely unknown. In this study, we identified that miR-30d was significantly downregulated in CRC tissues compared to that observed in normal controls as detected by RT-qPCR analysis. Downregulation of miR-30d was significantly associated with aggressive clinicopathological parameters including tumor differentiation, invasive depth, TNM stage, lymph node metastasis, distant metastasis, and poor prognosis. Furthermore, functional analysis revealed that overexpression of miR-30d significantly inhibited cell proliferation, caused cell cycle arrest at the G0/G1 phase, suppressed cell migration and invasion, induced cell apoptosis in vitro, and decreased tumor growth in a xenograft mouse model. Bioinformatic analysis and dual-luciferase reporter assay revealed that liver receptor homologue-1 (LRH-1) is a direct target of miR-30d in CRC cells. Rescue assay showed that LRH-1 overexpression could restore the inhibitory effect of miR-30d on CRC cells. In addition, miR-30d overexpression suppressed the activation of key components of the Wnt/β-catenin signaling pathway, β-catenin, c-Myc and cyclin D1, which contributed to the inhibition of CRC development. Thus, our findings suggest that miR-30d functions as a tumor suppressor against CRC development and miR-30d/LRH-1/Wnt signaling may be novel potential targets for CRC treatment.
Collapse
Affiliation(s)
- Likun Yan
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jian Qiu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Jianfeng Yao
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
11
|
Del Cornò M, Donninelli G, Conti L, Gessani S. Linking Diet to Colorectal Cancer: The Emerging Role of MicroRNA in the Communication between Plant and Animal Kingdoms. Front Microbiol 2017; 8:597. [PMID: 28424679 PMCID: PMC5380760 DOI: 10.3389/fmicb.2017.00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Environmental and lifestyle factors, including diet and nutritional habits have been strongly linked to colorectal cancer (CRC). Of note, unhealthy dietary habits leading to adiposity represent a main risk factor for CRC and are associated with a chronic low-grade inflammatory status. Inflammation is a hallmark of almost every type of cancer and can be modulated by several food compounds exhibiting either protective or promoting effects. However, in spite of an extensive research, the underlying mechanisms by which dietary patterns or bioactive food components may influence tumor onset and outcome have not been fully clarified yet. Growing evidence indicates that diet, combining beneficial substances and potentially harmful ingredients, has an impact on the expression of key regulators of gene expression such as the non-coding RNA (ncRNA). Since the expression of these molecules is deranged in chronic inflammation and cancer, modulating their expression may strongly influence the cancer phenotype and outcomes. In addition, the recently acquired knowledge on the existence of intricate inter-kingdom communication networks, is opening new avenues for a deeper understanding of the intimate relationships linking diet to CRC. In this novel scenario, diet-modulated ncRNA may represent key actors in the interaction between plant and animal kingdoms, capable of influencing disease onset and outcome. In this review, we will summarize the studies demonstrating a link between bioactive food components, including food-derived, microbiota-processed, secondary metabolites, and host ncRNA. We will focus on microRNA, highlighting how this plant/animal inter-kingdom cross-talk may have an impact on CRC establishment and progression.
Collapse
Affiliation(s)
- Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Lucia Conti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| |
Collapse
|
12
|
Ke J, Tian J, Li J, Gong Y, Yang Y, Zhu Y, Zhang Y, Zhong R, Chang J, Gong J. Identification of a functional polymorphism affecting microRNA binding in the susceptibility locus 1q25.3 for colorectal cancer. Mol Carcinog 2017; 56:2014-2021. [PMID: 28277607 DOI: 10.1002/mc.22649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/12/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
Genome-wide association studies (GWASs) have identified dozens of susceptibility loci for colorectal cancer (CRC). However, most of them lack functional genetic variants and clear biological mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs involved in a variety of physiological and tumorigenic processes. Here we hypothesized that single nucleotide polymorphisms (SNPs) that affect miRNAs biogenesis and binding, could contribute to CRC risk in the Chinese population. To locate miRNA-related SNPs in established GWAS loci, we initially screened out five candidate SNPs using a systematic bioinformatics analysis. Then, we performed a two-stage case-control study consisting of 2347 cases and 3390 controls, and found a positive polymorphism rs1062044, which presented consistently significant associations with CRC in both stages, and with an odds ratio (OR) = 1.32 (95% confidence interval (95%CI) = 1.18-1.49, P = 3.43E-06) under the dominant model in the combined study. Further luciferase reporter gene assays indicated that the variant G allele obviously improved the specific binding between miR-423-5p and the gene LAMC1. These findings suggested that the functional SNP rs1062044 at 1q25.3 might be a genetic modifier for the occurrence and development of CRC.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Key Laboratory for Environment and Health (Ministry of Education), School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jing Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), and Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Post-transcriptional regulation of the tumor suppressor p53 by a novel miR-27a, with implications during hypoxia and tumorigenesis. Biochem J 2016; 473:3597-3610. [PMID: 27531966 DOI: 10.1042/bcj20160359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
The tumor suppressor protein p53 is intricately regulated by various signaling molecules, including non-coding small RNAs, called microRNAs (miRNAs). The in silico analysis and the inverse expression status in various cell lines raised the possibility of miR-27a being a new regulator of p53. Using luciferase reporter assay and various mutational and functional analysis, we identified two putative binding sites of miR-27a on the 3'-UTR of p53. The overexpression of miR-27a in the human colorectal cancer cell line HCT-116+/+ resulted in the decreased expression of the endogenous p53 protein levels. During hypoxia of the HCT-116+/+ cells, p53 showed increased accumulation after 3 h, and the levels were significantly up-regulated until 24 h of hypoxia. The p53 expression dynamics during hypoxia of the HCT-116+/+ cells were found to be inversely regulated by miR-27a expression. Moreover, using a cell viability assay, we established that after 3 h of hypoxia, the accumulation of p53 results in a decreased number of the viable HCT-116+/+ cells and the overexpression of miR-27a resulted in an increased number of viable HCT-116+/+ cells with a concomitant decrease in p53 expression. Additionally, our data indicated that miR-27a and p53 depict inverse expression dynamics in 50% of the human colorectal cancer samples studied, when compared with that in the adjacent normal samples. Our data established that miR-27a and the tumor suppressor protein p53 are part of the same signaling network that has important implications during hypoxia and tumorigenesis.
Collapse
|