1
|
Xiong A, Ruan L, Ye K, Huang Z, Yu C. Extraction of Chitin from Black Soldier Fly ( Hermetia illucens) and Its Puparium by Using Biological Treatment. Life (Basel) 2023; 13:1424. [PMID: 37511799 PMCID: PMC10381830 DOI: 10.3390/life13071424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Chitin is the second-largest natural polymer polysaccharide in nature. Due to its important physical and chemical properties and excellent biocompatibility, safety, and biodegradability, it is widely used in agriculture, medicine, food, environmental protection, and other fields. However, traditional extraction methods cause environmental pollution and damage the structure of chitin. Bioprocessing is an emerging technology that shows great potential. In this research, the puparia and adults of black soldier fly (BSF) (Hermetia illucens L.) were used as raw materials. A continuous fermentation method was designed to extract chitin, by using Bacillus subtilis S4 and Acetobacter pasteurianus AS1.41. The Fourier transform infrared spectroscopy identification results showed that the extracted sample was α-chitin. Under continuous fermentation conditions, the deproteinization (DP) rate, demineralization (DM) rate, chitin yield (CY), and deacetylation degree (DD) of puparium chitin were 33.33%, 94.92%, 59.90%, and 18.52%, respectively. Meanwhile, the DP rate, DM rate, CY, and DD of adult chitin were 46.63%, 90.93%, 47.31%, and 37.38%, respectively. For BSF, B. subtilis S4 had a certain DP ability, and A. pasteurianus AS1.41 had a good DM effect. Moreover, BSF at different developmental stages could affect CY, and a higher concentration of NaOH was more favorable for deacetylation. Overall, simultaneous continuous fermentation could be a new biological approach to extract chitin from BSF.
Collapse
Affiliation(s)
- Anqi Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Linsen Ruan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Kaiyu Ye
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhiyong Huang
- Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Pales Espinosa E, Allam B. High spatial resolution mapping of the mucosal proteome of the gills of Crassostrea virginica: implication in particle processing. J Exp Biol 2021; 224:jeb.233361. [PMID: 33431594 DOI: 10.1242/jeb.233361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
In the oyster Crassostrea virginica, the organization of the gill allows bidirectional particle transport where a dorsal gill tract directs particles meant to be ingested while a ventral tract collects particles intended to be rejected as pseudofeces. Previous studies showed that the transport of particles in both tracts is mediated by mucus. Consequently, we hypothesized that the nature and/or the quantity of mucosal proteins present in each tract is likely to be different. Using endoscopy-aided micro-sampling of mucus from each tract followed by multidimensional protein identification technologies, and in situ hybridization, a high spatial resolution mapping of the oyster gill proteome was generated. Results showed the presence in gill mucus of a wide range of molecules involved in non-self recognition and interactions with microbes. Mucus composition was different between the two tracts, with mucus from the ventral tract shown to be rich in mucin-like proteins, providing an explanation of its high viscosity, while mucus from the dorsal tract was found to be enriched in mannose-binding proteins, known to be involved in food particle binding and selection. Overall, this study generated high-resolution proteomes for C. virginica gill mucus and demonstrated that the contrasting functions of the two pathways present on oyster gills are associated with significant differences in their protein makeup.
Collapse
Affiliation(s)
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
3
|
Nunes C, Sucena É, Koyama T. Endocrine regulation of immunity in insects. FEBS J 2020; 288:3928-3947. [PMID: 33021015 DOI: 10.1111/febs.15581] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Organisms have constant contact with potentially harmful agents that can compromise their fitness. However, most of the times these agents fail to cause serious disease by virtue of the rapid and efficient immune responses elicited in the host that can range from behavioural adaptations to immune system triggering. The immune system of insects does not comprise the adaptive arm, making it less complex than that of vertebrates, but key aspects of the activation and regulation of innate immunity are conserved across different phyla. This is the case for the hormonal regulation of immunity as a part of the broad organismal responses to external conditions under different internal states. In insects, depending on the physiological circumstances, distinct hormones either enhance or suppress the immune response integrating individual (and often collective) responses physiologically and behaviourally. In this review, we provide an overview of our current knowledge on the endocrine regulation of immunity in insects, its mechanisms and implications on metabolic adaptation and behaviour. We highlight the importance of this multilayered regulation of immunity in survival and reproduction (fitness) and its dependence on the hormonal integration with other mechanisms and life-history traits.
Collapse
Affiliation(s)
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Rodríguez-de la Noval C, Rodríguez-Cabrera L, Izquierdo L, Espinosa LA, Hernandez D, Ponce M, Moran-Bertot I, Tellez-Rodríguez P, Borras-Hidalgo O, Huang S, Kan Y, Wright DJ, Ayra-Pardo C. Functional expression of a peritrophin A-like SfPER protein is required for larval development in Spodoptera frugiperda (Lepidoptera: Noctuidae). Sci Rep 2019; 9:2630. [PMID: 30796291 PMCID: PMC6385298 DOI: 10.1038/s41598-019-38734-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023] Open
Abstract
Peritrophins are associated with structural and functional integrity of peritrophic membranes (PM), structures composed of chitin and proteins. PM lines the insect midgut and has roles in digestion and protection from toxins. We report the full-length cDNA cloning, molecular characterization and functional analysis of SfPER, a novel PM peritrophin A protein, in Spodoptera frugiperda. The predicted amino acid sequence indicated SfPER's domain structure as a CMCMC-type, consisting of a signal peptide and three chitin-binding (C) domains with two intervening mucin-like (M) domains. Phylogenetic analysis determined a close relationship between SfPER and another S. frugiperda PM peritrophin partial sequence. SfPER transcripts were found in larvae and adults but were absent from eggs and pupae. Chitin affinity studies with a recombinant SfPER-C1 peritrophin A-type domain fused to SUMO/His-tag confirmed that SfPER binds to chitin. Western blots of S. frugiperda larval proteins detected different sized variants of SfPER along the PM, with larger variants found towards the posterior PM. In vivo suppression of SfPER expression did not affect susceptibility of larvae to Bacillus thuringiensis toxin, but significantly decreased pupal weight and adult emergence, possibly due to PM structural alterations impairing digestion. Our results suggest SfPER could be a novel target for insect control.
Collapse
Affiliation(s)
- Claudia Rodríguez-de la Noval
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Laurent Izquierdo
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Luis A Espinosa
- Analytical Unit Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Daily Hernandez
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Milagro Ponce
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Ivis Moran-Bertot
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Pilar Tellez-Rodríguez
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Orlando Borras-Hidalgo
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, 250353, People's Republic of China
| | - Siliang Huang
- China-UK, NYNU-RRES Joint Insect Biology Laboratory, Nanyang Normal University, Henan, 473061, People's Republic of China
| | - Yunchao Kan
- China-UK, NYNU-RRES Joint Insect Biology Laboratory, Nanyang Normal University, Henan, 473061, People's Republic of China
| | - Denis J Wright
- Department of Life Sciences, Imperial College London, Silwood Park campus, Ascot, Berkshire, SL5 7PY, UK
| | - Camilo Ayra-Pardo
- China-UK, NYNU-RRES Joint Insect Biology Laboratory, Nanyang Normal University, Henan, 473061, People's Republic of China.
| |
Collapse
|
5
|
Chen E, Kolosov D, O'Donnell MJ, Erlandson MA, McNeil JN, Donly C. The Effect of Diet on Midgut and Resulting Changes in Infectiousness of AcMNPV Baculovirus in the Cabbage Looper, Trichoplusia ni. Front Physiol 2018; 9:1348. [PMID: 30337878 PMCID: PMC6180168 DOI: 10.3389/fphys.2018.01348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
Insecticide resistance has been reported in many important agricultural pests, and alternative management methods are required. Baculoviruses qualify as an effective, yet environmentally benign, biocontrol agent but their efficacy against generalist herbivores may be influenced by diet. However, few studies have investigated the tritrophic interactions of plant, pest, and pathogen from both a gene expression and physiological perspective. Here we use microscopy and transcriptomics to examine how diet affects the structure of peritrophic matrix (PM) in Trichoplusia ni larvae and consequently their susceptibility to the baculovirus, AcMNPV. Larvae raised on potato leaves had lower transcript levels for chitinase and chitin deacetylase genes, and possessed a thicker and more multi-layered PM than those raised on cabbage or artificial diet, which could contribute to their significantly lower susceptibility to the baculovirus. The consequences of these changes underline the importance of considering dietary influences on pathogen susceptibility in pest management strategies.
Collapse
Affiliation(s)
- Elizabeth Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| | - Dennis Kolosov
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Jeremy N McNeil
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Li-Byarlay H, Pittendrigh BR, Murdock LL. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2016; 8:71-79. [PMID: 27594789 PMCID: PMC5005011 DOI: 10.4137/ijis.s28595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- The W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Barry R. Pittendrigh
- Department of Entomology, Michigan State University, Natural Science Building, East Lansing MI, USA
| | - Larry L. Murdock
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|