1
|
Sillam-Dussès D, Jandák V, Stiblik P, Delattre O, Chouvenc T, Balvín O, Cvačka J, Soulet D, Synek J, Brothánek M, Jiříček O, Engel MS, Bourguignon T, Šobotník J. Alarm communication predates eusociality in termites. Commun Biol 2023; 6:83. [PMID: 36681783 PMCID: PMC9867704 DOI: 10.1038/s42003-023-04438-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Termites (Blattodea: Isoptera) have evolved specialized defensive strategies for colony protection. Alarm communication enables workers to escape threats while soldiers are recruited to the source of disturbance. Here, we study the vibroacoustic and chemical alarm communication in the wood roach Cryptocercus and in 20 termite species including seven of the nine termite families, all life-types, and all feeding and nesting habits. Our multidisciplinary approach shows that vibratory alarm signals represent an ethological synapomorphy of termites and Cryptocercus. In contrast, chemical alarms have evolved independently in several cockroach groups and at least twice in termites. Vibroacoustic alarm signaling patterns are the most complex in Neoisoptera, in which they are often combined with chemical signals. The alarm characters correlate to phylogenetic position, food type and hardness, foraging area size, and nesting habits. Overall, species of Neoisoptera have developed the most sophisticated communication system amongst termites, potentially contributing to their ecological success.
Collapse
Affiliation(s)
- David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France
| | - Vojtěch Jandák
- Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic
| | - Petr Stiblik
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Olivier Delattre
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France
| | - Thomas Chouvenc
- Entomology and Nematology Department, Fort Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Fort Lauderdale, Florida, 33314, USA
| | - Ondřej Balvín
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic
| | - Delphine Soulet
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology UR4443, 93430, Villetaneuse, France
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
| | - Marek Brothánek
- Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic
| | - Ondřej Jiříček
- Czech Technical University in Prague, Faculty of Electrical Engineering, 166 27, Prague 6, Czech Republic
| | - Michael S Engel
- Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive-Suite 140, University of Kansas, Lawrence, Kansas, 66045, USA.
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, 165 21, Prague 6 - Suchdol, Czech Republic.
| |
Collapse
|
2
|
Diouf M, Hervé V, Fréchault S, Lambourdière J, Ndiaye AB, Miambi E, Bourceret A, Jusselme MD, Selosse MA, Rouland-Lefèvre C. Succession of the microbiota in the gut of reproductives of Macrotermes subhyalinus (Termitidae) at colony foundation gives insights into symbionts transmission. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1055382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Termites have co-evolved with a complex gut microbiota consisting mostly of exclusive resident taxa, but key forces sustaining this exclusive partnership are still poorly understood. The potential for primary reproductives to vertically transmit their gut microbiota (mycobiome and bacteriome) to offspring was investigated using colony foundations from field-derived swarming alates of Macrotermes subhyalinus. Metabarcoding based on the fungal internal transcribed spacer (ITS) region and the bacterial 16S rRNA gene was used to characterize the reproductives mycobiome and bacteriome over the colony foundation time. The mycobiome of swarming alates differed from that of workers of Macrotermitinae and changed randomly within and between sampling time points, highlighting no close link with the gut habitat. The fungal ectosymbiont Termitomyces was lost early from the gut of reproductives, confirming the absence of vertical transmission to offspring. Unlike fungi, the bacteriome of alates mirrored that of workers of Macroterminae. Key genera and core OTUs inherited from the mother colony mostly persisted in the gut of reproductive until the emergence of workers, enabling their vertical transmission and explaining why they were found in offspring workers. These findings demonstrate that the parental transmission may greatly contribute to the maintenance of the bacteriome and its co-evolution with termite hosts at short time scales.
Collapse
|
3
|
Arora J, Kinjo Y, Šobotník J, Buček A, Clitheroe C, Stiblik P, Roisin Y, Žifčáková L, Park YC, Kim KY, Sillam-Dussès D, Hervé V, Lo N, Tokuda G, Brune A, Bourguignon T. The functional evolution of termite gut microbiota. MICROBIOME 2022; 10:78. [PMID: 35624491 PMCID: PMC9137090 DOI: 10.1186/s40168-022-01258-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Yukihiro Kinjo
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Aleš Buček
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Crystal Clitheroe
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Petr Stiblik
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Lucia Žifčáková
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Yung Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Ki Yoon Kim
- Division of Forest Science, Kangwon National University, Chuncheon, Republic of Korea
| | - David Sillam-Dussès
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, Villetaneuse, France
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Gaku Tokuda
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Chouvenc T, Lee SB. Queen Egg Laying and Egg Hatching Abilities are Hindered in Subterranean Termite Colonies When Exposed to a Chitin Synthesis Inhibitor Bait Formulation. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2466-2472. [PMID: 34668542 DOI: 10.1093/jee/toab200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Subterranean termite control methods using chitin synthesis inhibitors (CSIs) aim at eliminating colonies that feed upon a bait formulation. Several benzoylurea active ingredient formulations are currently commercially available as alternative termite management strategies to liquid termiticides. Individual workers need to molt on a regular basis and CSIs interfere with such molting process, allowing sufficient time for the acquisition of a colony-wide lethal dose prior to widespread mortality. As workers progressively die, the colony eventually collapses, leaving only soldiers and primary reproductives that starve to death. One common observation is that young workers often die early owing to their relatively short molting cycle. However, the absence of brood in dying colonies raises questions about the potential fate of eggs laid by the queen. This study aims to determine if CSI baits also terminate the ability of a colony to produce a new cohort of workers by disabling the ongoing brood development. Incipient termite colonies were used to test the impact of noviflumuron on the queen's ability to lay eggs and on the eggs' ability to hatch. Our results showed that queens in colonies exposed to CSI not only initially laid less eggs than the control queens, but eggs also did not develop and were progressively cannibalized, eventually leading to colony establishment failure. This result implies that queens of mature colonies exposed to CSI would lose the ability to lay viable eggs as the colony collapses, leading to an absence of worker replacement, aiding in colony elimination.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 3205 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Sang-Bin Lee
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 3205 College Avenue, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
5
|
Soil organic matter is essential for colony growth in subterranean termites. Sci Rep 2021; 11:21252. [PMID: 34711880 PMCID: PMC8553850 DOI: 10.1038/s41598-021-00674-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Intrinsic dinitrogen (N2) fixation by diazotrophic bacteria in termite hindguts has been considered an important pathway for nitrogen acquisition in termites. However, studies that supported this claim focused on measuring instant N2 fixation rates and failed to address their relationship with termite colony growth and reproduction over time. We here argue that not all wood-feeding termites rely on symbiotic diazotrophic bacteria for colony growth. The present study looks at dietary nitrogen acquisition in a subterranean termite (Rhinotermitidae, Coptotermes). Young termite colonies reared with wood and nitrogen-rich organic soil developed faster, compared to those reared on wood and inorganic sand. More critically, further colony development was arrested if access to organic soil was removed. In addition, no difference of relative nitrogenase expression rates was found when comparing the hindguts of termites reared between the two conditions. We therefore propose that subterranean termite (Rhinotermitidae) colony growth is no longer restricted to metabolically expensive intrinsic N2 fixation, as the relationship between diazotrophic bacteria and subterranean termites may primarily be trophic rather than symbiotic. Such reliance of Rhinotermitidae on soil microbial decomposition activity for optimal colony growth may also have had a critical mechanistic role in the initial emergence of Termitidae.
Collapse
|
6
|
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci 2021; 78:2749-2769. [PMID: 33388854 PMCID: PMC11071720 DOI: 10.1007/s00018-020-03728-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Entomology and Nematology Department, Institute of Food and Agricultural Science, Ft Lauderdale Research and Education Center, University of Florida, Davie, FL, USA.
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Michael S Engel
- Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, University of Kansas, 1501 Crestline Drive, Suite 140, Lawrence, KS, 66045, USA
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| |
Collapse
|
7
|
Pequeno PACL, Graça MB, Oliveira JR, Šobotník J, Acioli ANS. Can shifts in metabolic scaling predict coevolution between diet quality and body size? Evolution 2020; 75:141-148. [PMID: 33196103 DOI: 10.1111/evo.14128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Larger species tend to feed on abundant resources, which nonetheless have lower quality or degradability, the so-called Jarman-Bell principle. The "eat more" hypothesis posits that larger animals compensate for lower quality diets through higher consumption rates. If so, evolutionary shifts in metabolic scaling should affect the scope for this compensation, but whether this has happened is unknown. Here, we investigated this issue using termites, major tropical detritivores that feed along a humification gradient ranging from dead plant tissue to mineral soil. Metabolic scaling is shallower in termites with pounding mandibles adapted to soil-like substrates than in termites with grinding mandibles adapted to fibrous plant tissue. Accordingly, we predicted that only larger species of the former group should have more humified, lower quality diets, given their higher scope to compensate for such a diet. Using literature data on 65 termite species, we show that diet humification does increase with body size in termites with pounding mandibles, but is weakly related to size in termites with grinding mandibles. Our findings suggest that evolution of metabolic scaling may shape the strength of the Jarman-Bell principle.
Collapse
Affiliation(s)
- Pedro A C L Pequeno
- Roraima Research Nucleus, National Institute for Amazonia Research, R. Cel. Pinto, 315, Centro, Boa Vista - RR, CEP:, 69301-150, Brazil
| | - Márlon B Graça
- Federal Institute for Education, Science and Technology of Amazonas, Estr. Coari Itapeua, s/n - Itamarati, Coari - AM, CEP:, 69460-000, Brazil
| | - João R Oliveira
- Entomology Program, National Institute for Amazonia Research, Av. André Araújo, 2.936, Petrópolis, Manaus - AM, CEP: 69067-375, Brazil
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Agno N S Acioli
- Faculty of Agrarian Sciences, Federal University of Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 1200, Coroado I, Manaus - AM, CEP: 69067-005, Brazil
| |
Collapse
|
8
|
Gordon JM, Šobotník J, Chouvenc T. Colony-age-dependent variation in cuticular hydrocarbon profiles in subterranean termite colonies. Ecol Evol 2020; 10:10095-10104. [PMID: 33005366 PMCID: PMC7520186 DOI: 10.1002/ece3.6669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 01/22/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) have, in insects, important physiological and ecological functions, such as protection against desiccation and as semiochemicals in social taxa, including termites. CHCs are, in termites, known to vary qualitatively and/or quantitatively among species, populations, castes, or seasons. Changes to hydrocarbon profile composition have been linked to varying degrees of aggression between termite colonies, although the variability of results among studies suggests that additional factors might have been involved. One source of such variability may be colony age, as termite colony demographics significantly change over time, with different caste and instar compositions throughout the life of the colony. We here hypothesize that the intracolonial chemical profile heterogeneity would be high in incipient termite colonies but would homogenize over time as a colony ages and accumulates older workers in improved homeostatic conditions. We studied caste-specific patterns of CHC profiles in Coptotermes gestroi colonies of four different age classes (6, 18, 30, and 42 months). The CHC profiles were variable among castes in the youngest colonies, but progressively converged toward a colony-wide homogenized chemical profile. Young colonies had a less-defined CHC identity, which implies a potentially high acceptance threshold for non-nestmates conspecifics in young colonies. Our results also suggest that there was no selective pressure for an early-defined colony CHC profile to evolve in termites, potentially allowing an incipient colony to merge nonagonistically with another conspecific incipient colony, with both colonies indirectly and passively avoiding mutual destruction as a result.
Collapse
Affiliation(s)
- Johnalyn M. Gordon
- Entomology and Nematology DepartmentFt. Lauderdale Research and Education CenterInstitute of Food and Agricultural SciencesUniversity of FloridaDavieFLUSA
| | - Jan Šobotník
- Faculty of Tropical AgriSciencesCULSPragueCzech Republic
| | - Thomas Chouvenc
- Entomology and Nematology DepartmentFt. Lauderdale Research and Education CenterInstitute of Food and Agricultural SciencesUniversity of FloridaDavieFLUSA
| |
Collapse
|
9
|
Jahnes BC, Herrmann M, Sabree ZL. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 2019; 7:e6914. [PMID: 31139506 PMCID: PMC6521811 DOI: 10.7717/peerj.6914] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Microbial assemblages residing within and on animal gastric tissues contribute to various host beneficial processes that include diet accessibility and nutrient provisioning, and we sought to examine the degree to which intergenerational and community-acquired gut bacteria impact development in a tractable germ-free (GF) invertebrate model system. Coprophagy is a common behavior in cockroaches and termites that provides access to both nutrients and the primary means by which juveniles are inoculated with beneficial gut bacteria. This hypothesis was tested in the American cockroach (Periplaneta americana) by interfering with this means of acquiring gut bacteria, which resulted in GF insects that exhibited prolonged growth rates and gut tissue dysmorphias relative to wild-type (WT) P. americana. Conventionalization of GF P. americana via consumption of frass (feces) from conspecifics and siblings reared under non-sterile conditions resulted in colonization of P. americana gut tissues by a diverse microbial community and a significant (p < 0.05) recovery of WT level growth and hindgut tissue development phenotypes. These data suggest that coprophagy is essential for normal gut tissue and organismal development by introducing beneficial gut bacteria to P. americana, and that the GF P. americana model system is a useful system for examining how gut bacteria impact host outcomes.
Collapse
Affiliation(s)
- Benjamin C Jahnes
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Madeline Herrmann
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Zakee L Sabree
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Abstract
Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether- and carbon-carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating termite system, we reveal unprecedentedly rapid lignin depolymerization and degradation by combining laboratory feeding experiments, lignocellulosic compositional measurements, electron microscopy, 2D-NMR, and thermochemolysis. In a gut transit time of under 3.5 h, in young worker termites, poplar lignin sidechains are extensively cleaved and the polymer is significantly depleted, leaving a residue almost completely devoid of various condensed units that are traditionally recognized to be the most recalcitrant. Subsequently, the fungus-comb microbiome preferentially uses xylose and cleaves polysaccharides, thus facilitating final utilization of easily digestible oligosaccharides by old worker termites. This complementary symbiotic pretreatment process in the fungus-growing termite symbiosis reveals a previously unappreciated natural system for efficient lignocellulose degradation.
Collapse
|