1
|
Liu C, Li J, Wang D, Liu J, Liu K, Li P, Zhang Y. Recent Advances of the Zebrafish Model in the Discovery of Marine Bioactive Molecules. Mar Drugs 2024; 22:540. [PMID: 39728115 PMCID: PMC11678508 DOI: 10.3390/md22120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Marine natural products are increasingly utilized in nutrition, cosmetics, and medicine, garnering significant attention from researchers globally. With the expansion of marine resource exploration in recent years, the demand for marine natural products has risen, necessitating rapid and cost-effective activity evaluations using model organisms. Zebrafish, a valuable vertebrate model, has become an efficient tool for screening and identifying safe, active molecules from marine natural products. This review, based on nearly 10 years of literature, summarizes the current status and progress of zebrafish models in evaluating marine natural product bioactivity. It also highlights their potential in exploring marine resources with health benefits, offering a reference for the future development and utilization of marine biological resources.
Collapse
Affiliation(s)
- Changyu Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Jiaxun Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Dexu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Jibin Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (C.L.); (J.L.); (D.W.); (J.L.); (K.L.)
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Jinan 250103, China
| |
Collapse
|
2
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Turrini E, Maffei F, Fimognari C. Ten Years of Research on Fucoidan and Cancer: Focus on Its Antiangiogenic and Antimetastatic Effects. Mar Drugs 2023; 21:md21050307. [PMID: 37233501 DOI: 10.3390/md21050307] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Angiogenesis and metastasis represent two challenging targets to combat cancer development in the later stages of its progression. Numerous studies have indicated the important role of natural products in blocking tumor angiogenesis signaling pathways in several advanced tumors. In recent years, the marine polysaccharides fucoidans emerged as promising anticancer compounds showing potent antitumor activity in both in vitro and in vivo models of different types of cancers. The objective of this review is to focus on the antiangiogenic and antimetastatic activities of fucoidans with special emphasis on preclinical studies. Independently from their source, fucoidans inhibit several angiogenic regulators, primarily vascular endothelial growth factor (VEGF). A glance towards fucoidans' ongoing clinical trials and pharmacokinetic profile is provided to present the main challenges that still need to be addressed for their bench-to-bedside translation.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| |
Collapse
|
4
|
Yin J, Zhao G, Kalirai H, Coupland SE, Jochemsen AG, Forn-Cuní G, Wierenga APA, Jager MJ, Snaar-Jagalska BE, Groenewoud A. Zebrafish Patient-Derived Xenograft Model as a Preclinical Platform for Uveal Melanoma Drug Discovery. Pharmaceuticals (Basel) 2023; 16:598. [PMID: 37111355 PMCID: PMC10141637 DOI: 10.3390/ph16040598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Uveal melanoma (UM) is a rare malignant cancer of the eye, with up to 50% of patients dying from metastasis, for which no effective treatment is available. Due to the rarity of the disease, there is a great need to harness the limited material available from primary tumors and metastases for advanced research and preclinical drug screening. We established a platform to isolate, preserve, and transiently recover viable tissues, followed by the generation of spheroid cultures derived from primary UM. All assessed tumor-derived samples formed spheroids in culture within 24 h and stained positive for melanocyte-specific markers, indicating the retention of their melanocytic origin. These short-lived spheroids were only maintained for the duration of the experiment (7 days) or re-established from frozen tumor tissue acquired from the same patient. Intravenous injection of fluorescently labeled UM cells derived from these spheroids into zebrafish yielded a reproducible metastatic phenotype and recapitulated molecular features of the disseminating UM. This approach allowed for the experimental replications required for reliable drug screening (at least 2 individual biological experiments, with n > 20). Drug treatments with navitoclax and everolimus validated the zebrafish patient-derived model as a versatile preclinical tool for screening anti-UM drugs and as a preclinical platform to predict personalized drug responses.
Collapse
Affiliation(s)
- Jie Yin
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
| | - Gangyin Zhao
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
| | - Annemijn P. A. Wierenga
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Arwin Groenewoud
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands; (J.Y.)
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
5
|
Wang Q, Wang W, Pan W, Lv X, Zhang L, Zheng K, Tian F, Xu C. Case Report: Two Patients With EGFR Exon 20 Insertion Mutanted Non-Small Cell Lung Cancer Precision Treatment Using Patient-Derived Xenografts in Zebrafish Embryos. Front Oncol 2022; 12:884798. [PMID: 35936715 PMCID: PMC9348893 DOI: 10.3389/fonc.2022.884798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) exon 20 insertion mutations are uncommon EGFR mutations and generally resistant to first- and second-generation EGFR-tyrosine kinase inhibitors (TKIs). In precision oncology, treatment regimens are tested for improving the clinical outcomes. Zebrafish embryo tumor transplant models are used in cancer research. Methods We report two Chinese females who were diagnosed with stage IV lung adenocarcinoma and shown to harbor EGFR exon 20 insertion mutations by next-generation sequencing (NGS). Then, we established lung cancer patient-derived xenografts using a zebrafish model. The tumor cells were isolated from the patient. For case one, tumor cells were collected from lymph node biopsy, while the tumor cells were obtained from the pleural effusion. Zebrafish were inoculated with tumor cells and placed in the culture medium containing the third-generation EGFR-TKI, osimertinib. Fluorescence microscope photographs were used to record the red fluorescence area, which represented the proliferation and migration of tumor cells in the zebrafish. Results Case one was diagnosed with lung adenocarcinoma (cT4N3M1b, stage IVB) and had an EGFR exon 20 mutation (p. N771delinsHH [abundance 14.08%]). Tumor cell proliferation and migration were significantly reduced in the osimertinib group compared with the control group. The patient received first-line osimertinib (160 mg). According to RECIST v1.1, she achieved a partial response. Case two had stage IVA lung adenocarcinoma with a pleural effusion. The pleural effusion sample was selected to obtain tumor cells for injection, and the zebrafish lung cancer model was established. The proliferation of tumor cells in the osimertinib group was significantly reduced compared to the control group. The migration of tumor cells was not significantly reduced compared to the control group. The patient also received first-line osimertinib (160 mg). The lung lesions were stable, but the pleural effusion was poorly controlled. Conclusion Our study demonstrates the applicability of a zebrafish embryos model as an innovative platform to targeted drug testing. More precise methods are needed to select treatment options in the future.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Suqian Hospital of Chinese Medicine, Suqian, China
| | - Wenxian Wang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xiaojing Lv
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Lei Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Suqian Hospital of Chinese Medicine, Suqian, China
| | - Kaiming Zheng
- Department of Geriatric Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Department of Respiratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- *Correspondence: Chunwei Xu, ; Fang Tian,
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Chunwei Xu, ; Fang Tian,
| |
Collapse
|
6
|
Bekisz S, Baudin L, Buntinx F, Noël A, Geris L. In Vitro, In Vivo, and In Silico Models of Lymphangiogenesis in Solid Malignancies. Cancers (Basel) 2022; 14:1525. [PMID: 35326676 PMCID: PMC8946816 DOI: 10.3390/cancers14061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphangiogenesis (LA) is the formation of new lymphatic vessels by lymphatic endothelial cells (LECs) sprouting from pre-existing lymphatic vessels. It is increasingly recognized as being involved in many diseases, such as in cancer and secondary lymphedema, which most often results from cancer treatments. For some cancers, excessive LA is associated with cancer progression and metastatic dissemination to the lymph nodes (LNs) through lymphatic vessels. The study of LA through in vitro, in vivo, and, more recently, in silico models is of paramount importance in providing novel insights and identifying the key molecular actors in the biological dysregulation of this process under pathological conditions. In this review, the different biological (in vitro and in vivo) models of LA, especially in a cancer context, are explained and discussed, highlighting their principal modeled features as well as their advantages and drawbacks. Imaging techniques of the lymphatics, complementary or even essential to in vivo models, are also clarified and allow the establishment of the link with computational approaches. In silico models are introduced, theoretically described, and illustrated with examples specific to the lymphatic system and the LA. Together, these models constitute a toolbox allowing the LA research to be brought to the next level.
Collapse
Affiliation(s)
- Sophie Bekisz
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
| | - Louis Baudin
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Florence Buntinx
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Agnès Noël
- Laboratory of Biology of Tumor and Development, GIGA Cancer, ULiège, 4000 Liège, Belgium; (L.B.); (F.B.); (A.N.)
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In silico Medicine, ULiège, 4000 Liège, Belgium;
- Biomechanics Section, KU Leuven, 3000 Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Ye G, Zhang J, Zhang C. Stimulator of interferon response cGAMP interactor overcomes ERBB2-mediated apatinib resistance in head and neck squamous cell carcinoma. Aging (Albany NY) 2021; 13:20793-20807. [PMID: 34459788 PMCID: PMC8436913 DOI: 10.18632/aging.203475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Apatinib resistance is the main obstacle to the effective treatment of advanced head and neck squamous cell carcinoma (HNSCC). This study aimed to evaluate the function of Erb-B2 receptor tyrosine kinase 2 (ERBB2) and stimulator of interferon response cGAMP interactor (STING) in apatinib resistance in HNSCC. METHOD The Cancer Genome Atlas database of HNSCC was used to analyze the relationship between vascular endothelial growth factor receptor 2 (VEGFR2) expression and prognosis. An apatinib resistant (AR) HNSCC cell line was constructed based on the CAL27 cell line. RNA sequencing was performed to explore the differentially expressed mRNAs. Quantitative real-time reverse transcription PCR (qRT-PCR) and western blotting were used to evaluate the expression and phosphorylation level VEGFR2, ERBB2, STING, and related proteins. Apatinib resistance was evaluated by colony formation and cell viability assays. A mouse subcutaneous tumor formation model was established to evaluate the efficiency of combination treatment and vascularization was evaluated by assessing CD31 immunofluorescence. RESULT The expression of VEGFR2 was high in tumor of patients with HNSCC. Western blotting and qRT-PCR revealed that in AR cells, ERBB2 expression was high, whereas the expression of STING was low. Targeted treatment of ERBB2 using lapatinib could attenuate apatinib resistance. Further research confirmed that overexpressing STING could decrease ERBB2 expression. CONCLUSION STING could sensitize AR cells to apatinib by decreasing ERBB2 expression. The combination of lapatinib or a STING agonist with apatinib ameliorated acquired apatinib resistance in a synergistic manner.
Collapse
Affiliation(s)
- Guo Ye
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junbin Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Chengyao Zhang
- Department of Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
8
|
Nowik N, Prajsnar TK, Przyborowska A, Rakus K, Sienkiewicz W, Spaink HP, Podlasz P. The Role of Galanin during Bacterial Infection in Larval Zebrafish. Cells 2021; 10:cells10082011. [PMID: 34440783 PMCID: PMC8391356 DOI: 10.3390/cells10082011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Galanin is a peptide that is conserved among different species and plays various roles in an organism, although its entire role is not completely understood. For many years, galanin has been linked mainly with the neurotransmission in the nervous system; however, recent reports underline its role in immunity. Zebrafish (Danio rerio) is an intensively developing animal model to study infectious diseases. In this study, we used larval zebrafish to determine the role of galanin in bacterial infection. We showed that knockout of galanin in zebrafish leads to a higher bacterial burden and mortality during Mycobacterium marinum and Staphylococcus aureus infection, whereas administration of a galanin analogue, NAX 5055, improves the ability of fish to control the infection caused by both pathogens. Moreover, the transcriptomics data revealed that a lower number of genes were regulated in response to mycobacterial infection in gal−/− mutants compared with their gal+/+ wild-type counterparts. We also found that galanin deficiency led to significant changes in immune-related pathways, mostly connected with cytokine and chemokine functions. The results show that galanin acts not only as a neurotransmitter but is also involved in immune response to bacterial infections, demonstrating the complexity of the neuroendocrine system and its possible connection with immunity.
Collapse
Affiliation(s)
- Natalia Nowik
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
| | - Tomasz K. Prajsnar
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Anna Przyborowska
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland;
| | - Waldemar Sienkiewicz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (N.N.); (A.P.); (W.S.)
| | - Herman P. Spaink
- Department of Animal Sciences and Health, Institute of Biology (IBL), Leiden University, 2333 BE Leiden, The Netherlands; (T.K.P.); (H.P.S.)
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-5245291
| |
Collapse
|
9
|
Pawar NV, Singh PD, Prabhu PS, Rana JR. Carcinogen-Induced Model of Proangiogenesis in Zebrafish Embryo-Larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:447-453. [PMID: 33179787 DOI: 10.1002/etc.4928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Tumor angiogenesis is the main target in cancer drug development. Discovery of antiangiogenic agents targeting different mechanisms of action is the major area of research to control tumor growth and metastasis. Zebrafish (in the embryo-larvae stage) acts as an essential preclinical efficacy-toxicity model for antiangiogenic drug discovery. We aimed to develop a carcinogen-induced model of proangiogenesis in zebrafish embryo-larvae using the carcinogens lindane and benzo[a]pyrene. Zebrafish were randomly selected for mating. Postspawning, healthy embryos were staged, dispensed in reverse-osmosis water in a 12-well plate, and incubated at 28.5 °C, wherein 24 h postfertilization they were exposed to sublethal concentrations of the carcinogens. Three days postexposure, embryos were stained with alkaline phosphatase, and the angiogenic basket was imaged using a bright-field microscope. The number of subintestinal vessels, their length from somite to the basket, and other proangiogenic parameters were measured and analyzed. The effective concentrations causing a 30% increase in subintestinal vessels for benzo[a]pyrene and lindane were 2.69 and 2.24 µM, respectively, thus proving their proangiogenic potency. The carcinogen-induced model of proangiogenesis in zebrafish embryo-larvae can be used as an effective high-throughput screening tool to assess the proangiogenic potential of carcinogenic compounds and to screen antiangiogenic drugs for better therapeutic intervention. Environ Toxicol Chem 2021;40:447-453.© 2020 SETAC.
Collapse
Affiliation(s)
- Nilambari V Pawar
- Section of Ecotoxicology, Department of Chemistry, Jai Research Foundation, Valvada, Gujarat, India
| | - Pritee D Singh
- Section of Ecotoxicology, Department of Chemistry, Jai Research Foundation, Valvada, Gujarat, India
| | - Padmaja S Prabhu
- Section of Ecotoxicology, Department of Chemistry, Jai Research Foundation, Valvada, Gujarat, India
| | - Jigarkumar R Rana
- Section of Ecotoxicology, Department of Chemistry, Jai Research Foundation, Valvada, Gujarat, India
| |
Collapse
|
10
|
Yang QK, Chen T, Wang SQ, Zhang XJ, Yao ZX. Apatinib as targeted therapy for advanced bone and soft tissue sarcoma: a dilemma of reversing multidrug resistance while suffering drug resistance itself. Angiogenesis 2020; 23:279-298. [PMID: 32333216 DOI: 10.1007/s10456-020-09716-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Bone and soft tissue sarcomas are rare malignant tumors originated from mesenchymal tissues. They harbor more than 50 distinct subtypes and differ in pathological features and clinical courses. Despite the significant improvements in modern multi-modality treatment, the outcomes and overall survival rates remain poor for patients with advanced, refractory, metastatic, or relapsed diseases. The growth and metastasis of bone and soft tissue sarcoma largely depend on angiogenesis, and VEGF/VEGFR pathway is considered as the most prominent player in angiogenesis. Therefore, blockade of VEGF/VEGFR pathways is a promising therapeutic strategy to retard neovascularization. Several VEGFR inhibitors have been developed and revealed their favorable anti-neoplastic effects in various cancers, but such desirable anti-tumor effects are not obtained in advanced sarcomas because of multiple reasons, such as drug tolerance, short duration of response, and severe adverse effects. Fortunately, preclinical and clinical studies have indicated that apatinib is a novel promising VEGFR2 inhibitor showing potent anti-angiogenic and anti-neoplastic activities in advanced sarcomas. Especially, apatinib has showed notable characteristics in multidrug resistance reversal, tumor regression, vascular normalization, immunosuppression alleviation, and enhancement of chemotherapeutic and radiotherapeutic effects. However, apatinib also gets struck in dilemma of reversing multidrug resistance of chemotherapeutic agents while suffering drug resistance itself, and several difficulties should be tackled before full use of apatinib. In this review, we discuss the outstanding characteristics and main predicaments of apatinib as targeted therapy in advanced sarcomas. Bone and soft tissue sarcomas are rare but malignant tumors originated from mesenchymal tissues. They harbor more than 100 distinct subtypes and differ in features of pathologies and clinical courses. Despite the significant improvements in modern multi-modality treatment, the outcomes and overall survival rates remain poor for patients with advanced, refractory, metastatic, or relapsed lesions. The growth and metastasis of bone and soft tissue sarcoma largely depend on angiogenesis and VEGF/VEGFR pathways play a pivotal role in angiogenesis. Therefore, blockade of VEGF/VEGFR pathways is a promising therapeutic strategy. Several VEGFR inhibitors have been developed and verified in clinical trials but with unfavorable outcomes. Fortunately, preclinical studies and clinical trials have indicated that apatinib is a novel promising VEGFR2 inhibitor showing potent anti-angiogenic and anti-neoplastic activities in advanced sarcomas. Actually, apatinib has showed notable characteristics in multidrug resistance reversal, tumor regression, vascular normalization, immunosuppression alleviation, enhancement of chemotherapeutic and radiotherapeutic effects. However, apatinib also gets struck in dilemma of reversing multidrug resistance of chemotherapeutic agents while suffering drug resistance itself, and several difficulties should be tackled before full use of apatinib. In this review, we discuss the outstanding characteristics and main predicaments of apatinib as targeted therapy in advanced sarcomas.
Collapse
Affiliation(s)
- Qian-Kun Yang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
- Department of Physiology, Army Medical University, Chongqing, 400038, China
| | - Tong Chen
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Shi-Qi Wang
- Troops 65651 of Chinese People's Liberation Army, Jinzhou, 121100, China
| | - Xiao-Jing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| | - Zhong-Xiang Yao
- Department of Physiology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252:117670. [PMID: 32298741 DOI: 10.1016/j.lfs.2020.117670] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis is a key reason for tumor growth and progression. Several anti-angiogenic drugs in clinical practice attempt to normalize abnormal tumor vasculature. Unfortunately, these drugs are ineffective due to the development of resistance in patients after drug holidays. A sizable literature suggests that resistance to these anti-angiogenic drugs occurs due to various compensatory mechanisms of tumor angiogenesis. Therefore, we describe different compensatory mechanisms of tumor angiogenesis, and explain why intussusceptive angiogenesis (IA), is a crucial mechanism of compensatory angiogenesis in tumors which resist anti-VEGF (vascular endothelial growth factor) therapies. IA is often overlooked due to the scarcity of experimental models. Therefore, we examine data from existing experimental models and our novel ex-ovo model of angiogenesis in chick embryos, and explain the important genes and signaling pathways driving IA. Using bio-informatic analyses of major genes regulating conventional sprouting angiogenesis (SA) and intussusceptive angiogenesis, we provide fresh insights on the 'angiogenic switch' which regulates the transition from SA to IA. Finally, we examine the interplay between molecules regulating SA, IA, and molecules known to promote tumor progression. Based on these analyses, we conclude that intussusceptive angiogenesis (IA) is a promising therapeutic target for developing effective anti-cancer treatment regimes.
Collapse
Affiliation(s)
- Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Koka Pavani
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Ramesh Nikarika
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Venil N Sumantran
- Abdul Kalam Center for Innovation and Entrepreneurship, Dr. MGR Educational & Research Institute, Maduravoyal, Chennai 600095, India
| |
Collapse
|
12
|
Sommer F, Torraca V, Meijer AH. Chemokine Receptors and Phagocyte Biology in Zebrafish. Front Immunol 2020; 11:325. [PMID: 32161595 PMCID: PMC7053378 DOI: 10.3389/fimmu.2020.00325] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Phagocytes are highly motile immune cells that ingest and clear microbial invaders, harmful substances, and dying cells. Their function is critically dependent on the expression of chemokine receptors, a class of G-protein-coupled receptors (GPCRs). Chemokine receptors coordinate the recruitment of phagocytes and other immune cells to sites of infection and damage, modulate inflammatory and wound healing responses, and direct cell differentiation, proliferation, and polarization. Besides, a structurally diverse group of atypical chemokine receptors (ACKRs) are unable to signal in G-protein-dependent fashion themselves but can shape chemokine gradients by fine-tuning the activity of conventional chemokine receptors. The optically transparent zebrafish embryos and larvae provide a powerful in vivo system to visualize phagocytes during development and study them as key elements of the immune response in real-time. In this review, we discuss how the zebrafish model has furthered our understanding of the role of two main classes of chemokine receptors, the CC and CXC subtypes, in phagocyte biology. We address the roles of the receptors in the migratory properties of phagocytes in zebrafish models for cancer, infectious disease, and inflammation. We illustrate how studies in zebrafish enable visualizing the contribution of chemokine receptors and ACKRs in shaping self-generated chemokine gradients of migrating cells. Taking the functional antagonism between two paralogs of the CXCR3 family as an example, we discuss how the duplication of chemokine receptor genes in zebrafish poses challenges, but also provides opportunities to study sub-functionalization or loss-of-function events. We emphasize how the zebrafish model has been instrumental to prove that the major determinant for the functional outcome of a chemokine receptor-ligand interaction is the cell-type expressing the receptor. Finally, we highlight relevant homologies and analogies between mammalian and zebrafish phagocyte function and discuss the potential of zebrafish models to further advance our understanding of chemokine receptors in innate immunity and disease.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
13
|
ZeOncoTest: Refining and Automating the Zebrafish Xenograft Model for Drug Discovery in Cancer. Pharmaceuticals (Basel) 2019; 13:ph13010001. [PMID: 31878274 PMCID: PMC7169390 DOI: 10.3390/ph13010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The xenograft of human cancer cells in model animals is a powerful tool for understanding tumor progression and metastatic potential. Mice represent a validated host, but their use is limited by the elevated experimental costs and low throughput. To overcome these restrictions, zebrafish larvae might represent a valuable alternative. Their small size and transparency allow the tracking of transplanted cells. Therefore, tumor growth and early steps of metastasis, which are difficult to evaluate in mice, can be addressed. In spite of its advantages, the use of this model has been hindered by lack of experimental homogeneity and validation. Considering these facts, the aim of our work was to standardize, automate, and validate a zebrafish larvae xenograft assay with increased translatability and higher drug screening throughput. The ZeOncoTest reliability is based on the optimization of different experimental parameters, such as cell labeling, injection site, automated individual sample image acquisition, and analysis. This workflow implementation finally allows a higher precision and experimental throughput increase, when compared to previous reports. The approach was validated with the breast cancer cell line MDA-MB-231, the colorectal cancer cells HCT116, and the prostate cancer cells PC3; and known drugs, respectively RKI-1447, Docetaxel, and Mitoxantrone. The results recapitulate growth and invasion for all tested tumor cells, along with expected efficacy of the compounds. Finally, the methodology has proven useful for understanding specific drugs mode of action. The insights gained bring a step further for zebrafish larvae xenografts to enter the regulated preclinical drug discovery path.
Collapse
|
14
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Timmermans-Sprang EPM, Mestemaker HM, Steenlage RR, Mol JA. Dasatinib inhibition of cSRC prevents the migration and metastasis of canine mammary cancer cells with enhanced Wnt and HER signalling. Vet Comp Oncol 2019; 17:413-426. [PMID: 31069942 DOI: 10.1111/vco.12490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/05/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor 2 (HER2) overexpression leads to aggressive mammary tumour growth. Although the prognosis of HER2+ tumours in humans is greatly improved using biologicals, therapy resistance, which may be caused by increased phosphatidyl-3-kinase (PI3K), rous sarcoma proto-oncogene (cSRC) or wingless-type MMTV integration site family (Wnt) activity, is a major concern. A recent analysis of 12 canine mammary cell lines showed an association between HER2/3 overexpression and phosphatase and tensin homologue (PTEN) deletion with elevated Wnt-signalling. Wnt-activity appeared to be insensitive to phosphatidyl-3-kinase (PI3K) inhibitors but sensitive to Src-I1. We hypothesized that Wnt activation, was caused by HER2/3-activated cSRC activation. The role of HER2/3 on Wnt signalling was investigated by silencing HER2/3 expression using specific small interfering RNA (siRNAs). Next, the effect of an epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor on Wnt activity and migration was investigated and compared to other tyrosine kinase inhibitors (TKIs) of related signalling pathways. Finally, two TKIs, a cSRC and a PI3K inhibitor, were investigated in a zebrafish xenograft model. Silencing of HER1-3 did not inhibit the intrinsic high Wnt activity, whereas the HER kinase inhibitor afatinib showed enhanced Wnt activity. The strongest inhibition of Wnt activity and cell viability and migration was shown by cSRC inhibitors, which also showed strong inhibition of cell viability and metastasis in a zebrafish xenograft model. HER2/3 overexpression or HER2/3-induced cSRC activation is not the cause of enhanced Wnt activity. However, inhibition of cSRC resulted in a strong inhibition of Wnt activity and cell migration and metastasis. Further studies are needed to unravel the mechanism of cSRC activation and cSRC inhibition to restore sensitivity to HER-inhibitors in HER2/3-positive breast cancer.
Collapse
Affiliation(s)
| | - Helena M Mestemaker
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Renske R Steenlage
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Tulotta C, Groenewoud A, Snaar-Jagalska BE, Ottewell P. Animal Models of Breast Cancer Bone Metastasis. Methods Mol Biol 2019; 1914:309-330. [PMID: 30729473 DOI: 10.1007/978-1-4939-8997-3_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter is designed to provide a comprehensive overview outlining the different in vivo models available for research into breast cancer bone metastasis. The main focus is to guide the researcher through the methodological processes required to establish and utilize these models within their own laboratory. These detailed methods are designed to enable the acquisition of accurate and meaningful results that can be used for publication and future translation into clinical benefit for women with breast cancer-induced bone metastasis.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Arwin Groenewoud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Penelope Ottewell
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
| |
Collapse
|
17
|
Cytotoxicity and Toxicity Evaluation of Xanthone Crude Extract on Hypoxic Human Hepatocellular Carcinoma and Zebrafish ( Danio rerio) Embryos. TOXICS 2018; 6:toxics6040060. [PMID: 30304811 PMCID: PMC6316214 DOI: 10.3390/toxics6040060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.
Collapse
|
18
|
Zuazo-Gaztelu I, Casanovas O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front Oncol 2018; 8:248. [PMID: 30013950 PMCID: PMC6036108 DOI: 10.3389/fonc.2018.00248] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of the tumor and stromal cell-driven angiogenic program is one of the first requirements in the tumor ecosystem for growth and dissemination. The understanding of the dynamic angiogenic tumor ecosystem has rapidly evolved over the last decades. Beginning with the canonical sprouting angiogenesis, followed by vasculogenesis and intussusception, and finishing with vasculogenic mimicry, the need for different neovascularization mechanisms is further explored. In addition, an overview of the orchestration of angiogenesis within the tumor ecosystem cellular and molecular components is provided. Clinical evidence has demonstrated the effectiveness of traditional vessel-directed antiangiogenics, stressing on the important role of angiogenesis in tumor establishment, dissemination, and growth. Particular focus is placed on the interaction between tumor cells and their surrounding ecosystem, which is now regarded as a promising target for the development of new antiangiogenics.
Collapse
Affiliation(s)
- Iratxe Zuazo-Gaztelu
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, Barcelona, Spain
| |
Collapse
|
19
|
Pruszko M, Milano E, Zylicz A, Zylicz M, Blandino G, Fontemaggi G. Zebrafish as experimental model to establish the contribution of mutant p53 and ID4 to breast cancer angiogenesis in vivo. J Thorac Dis 2018; 10:E231-E233. [PMID: 29708138 DOI: 10.21037/jtd.2018.03.86] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Magdalena Pruszko
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elisa Milano
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alicja Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Maciej Zylicz
- Department of Molecular Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
20
|
Jeffrey EJ, Crawford BD. The epitope-mediated MMP activation assay: detection and quantification of the activation of Mmp2 in vivo in the zebrafish embryo. Histochem Cell Biol 2018; 149:277-286. [PMID: 29350268 DOI: 10.1007/s00418-018-1634-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Matrix remodeling is a consequence of tightly regulated matrix metalloproteinase (MMP) activity. MMPs are synthesized as inactive precursors with auto-inhibitory N-terminal propeptides, the proteolytic removal of which exposes the catalytic zinc ion, rendering the protease active. The regulation of MMP activation has been investigated primarily in tissue culture and biochemical assays that lack important biological context. Here we present the epitope-mediated MMP activation (EMMA) assay and use it to observe the activation of Mmp2 (gelatinase A) by endogenous mechanisms in the intact zebrafish embryo. The hemagglutinin (HA) and GFP-tagged reporter construct becomes activated on the surface of specific cells and this activation is abolished by broad-spectrum inhibition of metalloproteinase activity, consistent with existing models of gelatinase A activation. The mechanism(s) acting on the construct are spatially restricted, metalloproteinase-dependent and replacing the HA tag with mCherry abolishes activation, showing that the mechanism(s) are sensitive to the structure of the N-terminal domain. The construct is activated strongly in maturing myotome boundaries, but also intracellularly within myofibrils, consistent with reports implicating this protease in muscle development and function. In addition to general-purpose tools for the production of "EMMAed" MMPs and other proteins, we have established a transgenic line of zebrafish expressing EMMAedMmp2 under control of an inducible promoter to facilitate further investigation into the regulation of this ubiquitous ECM-remodeling protease in vivo.
Collapse
Affiliation(s)
- Emma J Jeffrey
- Matrix Dynamics Lab, Biology Department, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| | - Bryan D Crawford
- Matrix Dynamics Lab, Biology Department, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
21
|
Ai N, Chong CM, Chen W, Hu Z, Su H, Chen G, Lei Wong QW, Ge W. Ponatinib exerts anti-angiogenic effects in the zebrafish and human umbilical vein endothelial cells via blocking VEGFR signaling pathway. Oncotarget 2018; 9:31958-31970. [PMID: 30174789 PMCID: PMC6112840 DOI: 10.18632/oncotarget.24110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a hallmark for cancer development because it is essential for cancer growth and provides the route for cancer cell migration (metastasis). Understanding the mechanism of angiogenesis and developing drugs that target the process has therefore been a major focus for research on cancer therapy. In this study, we screened 114 FDA-approved anti-cancer drugs for their effects on angiogenesis in the zebrafish. Among those with positive effects, we chose to focus on Ponatinib (AP24534; Iclusig®) for further investigation. Ponatinib is an inhibitor of the tyrosine kinase BCR-ABL in chronic myeloid leukemia (CML), and its clinical trial has been approved by FDA for the treatment of the disease. In recent clinical trials, however, some side effects have been reported for Ponatinib, mostly on blood vessel disorders, raising the possibility that this drug may influence angiogenesis. In this study, we demonstrated that Ponatinib was able to suppress the formation of intersegmental vessels (ISV) and subintestinal vessels (SIV) in the zebrafish larvae. The anti-angiogenic effect of Ponatinib was further validated by other bioassays in human umbilical vein endothelial cells (HUVECs), including cell proliferation and migration, tube formation, and wound healing. Further experiments showed that Ponatinib inhibited VEGF-induced VEGFR2 phosphorylation and its downstream signaling pathways including Akt/eNOS/NO pathway and MAPK pathways (ERK and p38MAPK). Taken together, these results suggest that inhibition of VEGF signaling at its receptor level and downstream pathways may likely be responsible for the antiangiogenic activity of Ponatinib.
Collapse
Affiliation(s)
- Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Cheong-Meng Chong
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Huanxing Su
- Institute of Chinese Medicinal Sciences (ICMS), University of Macau, Macau, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Queenie Wing Lei Wong
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
22
|
Wu JQ, Zhai J, Li CY, Tan AM, Wei P, Shen LZ, He MF. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:160. [PMID: 29141689 PMCID: PMC5688753 DOI: 10.1186/s13046-017-0631-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
Background Gastric cancer (GC) is among the most commonly cancer occurred in Asian, especially in China. With its high heterogeneity and few of validated drug targets, GC remains to be one of the most under explored areas of precision medicine. In this study, we aimed to establish an in vivo patient-derived xenograft (PDX) model based on zebrafish (Danio rerio) embryos, allowing for a rapid analysis of the angiogenic and invasive potentials, as well as a fast drug sensitivity testing. Methods Two human gastric cancer cell lines (AGS and SGC-7901) were xenografted into zebrafish embryos, their sensitivity to 5-FU were tested both in vitro and in vivo. Fourteen human primary cells from gastric cancer tissue were xenografted into zebrafish embryos, their proliferating, angiogenic and metastatic activities were evaluated in vivo. Sensitivity to 5-FU, docetaxel, and apatinib were also tested on primary samples from four patients. Results SGC-7901 showed higher sensitivity to 5-FU than AGS both in vitro (6.3 ± 0.9 μM vs.10.5 ± 1.8 μM) and in vivo. Nine out of fourteen patient samples were successfully transplanted in zebrafish embryos and all showed proliferating, angiogenic and metastatic potentials in the living embryos. Four cases showed varied sensitivity to the selected three chemotherapeutic drugs. Conclusions Our zebrafish PDX (zPDX) model is a preclinically reliable in vivo model for GC. The zPDX model is also a promising platform for the translational research and personalized treatment on GC. Electronic supplementary material The online version of this article (10.1186/s13046-017-0631-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Qi Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China
| | - Jing Zhai
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.,Department of Surgery Oncology, First Affiliated Hospital, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Chong-Yong Li
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China
| | - Ai-Min Tan
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical R&D Co. Ltd., Nanjing, Jiangsu, 210042, China
| | - Ping Wei
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China
| | - Li-Zong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
23
|
Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods 2017; 30:203-219. [PMID: 32288791 PMCID: PMC7104980 DOI: 10.1016/j.jff.2017.01.022] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 01/01/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
The consumption of diet-based naturally bioactive metabolites is preferred to synthetic material in order to avert health-associated disorders. Among the plant-derived polyphenols, kaempferol (KMF) is considered as a valuable functional food ingredient with a broad range of therapeutic applications such as anti-cancer, antioxidant and anti-inflammatory uses. KMF acts on a range of intracellular as well as extracellular targets involved in the cell signaling pathways that in turn are known to regulate the hallmarks of cancer growth progressions like apoptosis, cell cycle, invasion or metastasis, angiogenesis and inflammation. Importantly, the understanding of mechanisms of action of KMF-mediated therapeutic effects may help the scientific community to design novel strategies for the treatment of dreadful diseases. The current review summarizes the various types of molecular targets of KMF in cancer cells as well as other health-associated disorders. In addition, this review also highlights the absorption, metabolism and epidemiological findings.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | | | - Sandeep Punia
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| | - Tapan K. Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, Haryana, India
| |
Collapse
|