1
|
Baskin L, Cao M, Askel S, Li Y, Cunha G. Ovotesticular cords and ovotesticular follicles: New markers in a model of human mixed ovotestis. Differentiation 2024; 135:100739. [PMID: 38000942 DOI: 10.1016/j.diff.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/21/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Affiliation(s)
- Laurence Baskin
- Department of Urology, University of California, San Francisco, United States.
| | - Mei Cao
- Department of Urology, University of California, San Francisco, United States
| | - Sena Askel
- Department of Urology, University of California, San Francisco, United States
| | - Yi Li
- Department of Urology, University of California, San Francisco, United States
| | - Gerald Cunha
- Department of Urology, University of California, San Francisco, United States
| |
Collapse
|
2
|
Li Y, Overland M, Derpinghaus A, Aksel S, Cao M, Ladwig N, Cunha GR, Baskin LS. Development of the human fetal testis: Morphology and expression of cellular differentiation markers. Differentiation 2023; 129:17-36. [PMID: 35490077 DOI: 10.1016/j.diff.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023]
Abstract
A comprehensive immunohistochemical ontogeny of the developing human fetal testis has remained incomplete in the literature to date. We collected human fetal testes from 8 to 21 weeks of fetal age, as well as postnatal human testes at minipuberty, pre-pubertal, and pubertal stages. Immunohistochemistry was performed with a comprehensive panel of antigens targeting gonadocytes, Sertoli cells, fetal Leydig cells, peritubular myoid cells, and other hormonal and developmental targets. Testicular cords, precursor structures to seminiferous tubules, developed from 8 to 14 weeks of fetal age, separating the testis into the interstitial and intracordal compartments. Fetal gonadocytes were localized within the testicular cords and evaluated for Testis-Specific Protein Y, Octamer-binding transcription factor 4, Sal-like protein 4, and placental alkaline phosphatase expression. Fetal Sertoli cells were also localized in the testicular cords and evaluated for SRY-box Transcription Factor 9, inhibin, and anti-Mullerian hormone expression. Fetal Leydig cells were present in the interstitium and stained for cytochrome p450c17 and calretinin, while interstitial peritubular myoid cells were examined using smooth muscle α-actin staining. Androgen receptor expression was localized close to the testicular medulla at 8 weeks and then around the testicular cords in the interstitium as they matured in structure. Postnatal staining showed that Testis-Specific Protein Y remained positive of male gonadocytes throughout adulthood. Anti-Mullerian hormone, SRY-box Transcription Factor 9, and Steroidogenic factor 1 are expressed by the postnatal Sertoli cells at all ages examined. Leydig cell markers cytochrome p450c17 and calretinin are expressed during mini-puberty and puberty, but not expressed during the pre-pubertal period. Smooth muscle α-actin and androgen receptor were not expressed during mini-puberty or pre-puberty, but again expressed during the pubertal period. The ontogenic map of the human fetal and postnatal testicular structure and expression patterns described here will serve as a reference for future investigations into normal and abnormal testicular development.
Collapse
Affiliation(s)
- Yi Li
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sena Aksel
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Nicholas Ladwig
- Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Sotillos S, von der Decken I, Domenech Mercadé I, Srinivasan S, Sirokha D, Livshits L, Vanni S, Nef S, Biason-Lauber A, Rodríguez Gutiérrez D, Castelli-Gair Hombría J. A conserved function of Human DLC3 and Drosophila Cv-c in testis development. eLife 2022; 11:82343. [PMID: 36326091 PMCID: PMC9678365 DOI: 10.7554/elife.82343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development (DSD). Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients. We have studied the requirement of Cv-c, the Drosophila ortholog of DLC3, in Drosophila gonad development, as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development. We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting functional conservation. We also demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity. This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del DesarrolloSevilleSpain
| | - Isabel von der Decken
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Ivan Domenech Mercadé
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | | - Dmytro Sirokha
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Ludmila Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Stefano Vanni
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Anna Biason-Lauber
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Daniel Rodríguez Gutiérrez
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
4
|
Song Y, Hu W, Ge W. Establishment of transgenic zebrafish (Danio rerio) models expressing fluorescence proteins in the oocytes and somatic supporting cells. Gen Comp Endocrinol 2021; 314:113907. [PMID: 34543655 DOI: 10.1016/j.ygcen.2021.113907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
The interaction between gonadal somatic support cells and germ cells plays a crucial role in gonadal development. In fish, the process involves various local growth factors such as growth differentiation factor 9 (Gdf9) and gonadal soma-derived factor (Gsdf), which are both members of the transforming growth factor-β (TGF-β) superfamily. Gdf9, an oocyte-secreted factor, is a potent regulator of folliculogenesis in both mammals and fish. By contrast, Gsdf is expressed by the gonadal somatic cells (i.e., Sertoli cells in the testis and granulosa cells in the ovary) that support germ cell development. In this study, we established two transgenic zebrafish models, and demonstrated that the 2.7-kb proximal promoter region of gdf9 drove mCherry expression specifically in the oocytes, whereas the 2.1-kb proximal promoter region of gsdf drove enhanced green fluorescent protein (eGFP) expression in the Sertoli cells and granulosa cells. These proximal promoters contained sufficient information to respectively mimic the spatiotemporal expression patterns of endogenous gdf9 and gsdf in zebrafish. In the Tg(gdf9:mCherry) fish, mCherry was weakly expressed in the oocytes at primary growth stage but strongly expressed in those entering the secondary growth phase. In the Tg(gsdf:eGFP) fish, eGFP-positive Sertoli cells were distributed around spermatogenic cysts in the testis, whereas eGFP-positive granulosa cells were located at the outer side of the follicle layer in the ovary. The eGFP-positive Sertoli cells and granulosa cells seemed to have originated from the dorsal epithelium of the gonads. These Tg(gdf9:mCherry) and Tg(gsdf:eGFP) zebrafish models are suitable for studying gonadal development and function especially on the interaction between germ cells and supporting somatic cells.
Collapse
Affiliation(s)
- Yanlong Song
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
5
|
Hilton EN, Lundberg TR. Transgender Women in the Female Category of Sport: Perspectives on Testosterone Suppression and Performance Advantage. Sports Med 2021; 51:199-214. [PMID: 33289906 PMCID: PMC7846503 DOI: 10.1007/s40279-020-01389-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Males enjoy physical performance advantages over females within competitive sport. The sex-based segregation into male and female sporting categories does not account for transgender persons who experience incongruence between their biological sex and their experienced gender identity. Accordingly, the International Olympic Committee (IOC) determined criteria by which a transgender woman may be eligible to compete in the female category, requiring total serum testosterone levels to be suppressed below 10 nmol/L for at least 12 months prior to and during competition. Whether this regulation removes the male performance advantage has not been scrutinized. Here, we review how differences in biological characteristics between biological males and females affect sporting performance and assess whether evidence exists to support the assumption that testosterone suppression in transgender women removes the male performance advantage and thus delivers fair and safe competition. We report that the performance gap between males and females becomes significant at puberty and often amounts to 10-50% depending on sport. The performance gap is more pronounced in sporting activities relying on muscle mass and explosive strength, particularly in the upper body. Longitudinal studies examining the effects of testosterone suppression on muscle mass and strength in transgender women consistently show very modest changes, where the loss of lean body mass, muscle area and strength typically amounts to approximately 5% after 12 months of treatment. Thus, the muscular advantage enjoyed by transgender women is only minimally reduced when testosterone is suppressed. Sports organizations should consider this evidence when reassessing current policies regarding participation of transgender women in the female category of sport.
Collapse
Affiliation(s)
- Emma N Hilton
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Tommy R Lundberg
- Department of Laboratory Medicine/ANA Futura, Division of Clinical Physiology, Karolinska Institutet, Alfred Nobles Allé 8B, Huddinge, 141 52, Stockholm, Sweden.
- Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Xu C, Mohsin A, Luo Y, Xie L, Peng Y, Wang Q, Ahmed W, Hang H, Zhuang Y, Guo M. Inducing Non-genetically Modified Induced Embryonic Sertoli Cells Derived From Embryonic Stem Cells With Recombinant Protein Factors. Front Cell Dev Biol 2021; 8:533543. [PMID: 33585437 PMCID: PMC7875124 DOI: 10.3389/fcell.2020.533543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
Embryonic Sertoli cells (eSCs) possess multiple supporting functions and research value in gonadal development and sex determination. However, the limitation of acquiring quality eSCs had hindered the further application. Herein, we successfully derived non-genetically modified (non-GM)-induced embryonic Sertoli-like cells (eSLCs) from mouse embryonic stem cells (ESCs) with a TM4 cell-derived conditioned medium containing recombinant endogenous protein factors Sry, Sox9, Sf1, Wt1, Gata4, and Dmrt1. These eSLCs were determined through morphology; transcriptional expression levels of stage-specific, epithelial, and mesenchymal marker genes; flow cytometry, immunofluorescence; and immunocytochemistry and functionally determined by coculture with spermatogonia stem cells. Results indicated that these eSLCs performed similarly to eSCs in specific biomarkers and expression of marker genes and supported the maturation of spermatogonia. The study induced eSLCs from mouse ESCs by defined protein factors. However, the inducing efficiency of the non-GM method was still lower than that of the lentiviral transduction method. Thus, this work established a foundation for future production of non-GM eSLCs for clinical applications and fundamental theory research.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Estermann MA, Major AT, Smith CA. Gonadal Sex Differentiation: Supporting Versus Steroidogenic Cell Lineage Specification in Mammals and Birds. Front Cell Dev Biol 2020; 8:616387. [PMID: 33392204 PMCID: PMC7775416 DOI: 10.3389/fcell.2020.616387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023] Open
Abstract
The gonads of vertebrate embryos are unique among organs because they have a developmental choice; ovary or testis formation. Given the importance of proper gonad formation for sexual development and reproduction, considerable research has been conducted over the years to elucidate the genetic and cellular mechanisms of gonad formation and sexual differentiation. While the molecular trigger for gonadal sex differentiation into ovary of testis can vary among vertebrates, from egg temperature to sex-chromosome linked master genes, the downstream molecular pathways are largely conserved. The cell biology of gonadal formation and differentiation has long thought to also be conserved. However, recent discoveries point to divergent mechanisms of gonad formation, at least among birds and mammals. In this mini-review, we provide an overview of cell lineage allocation during gonadal sex differentiation in the mouse model, focusing on the key supporting and steroidogenic cells and drawing on recent insights provided by single cell RNA-sequencing. We compare this data with emerging information in the chicken model. We highlight surprising differences in cell lineage specification between species and identify gaps in our current understanding of the cell biology underlying gonadogenesis.
Collapse
|
8
|
Ortega EA, Salvador Q, Fernandez M, Ward MA. Alterations of sex determination pathways in the genital ridges of males with limited Y chromosome genes†. Biol Reprod 2020; 100:810-823. [PMID: 30285093 DOI: 10.1093/biolre/ioy218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/09/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that in the mouse only two Y chromosome genes are required for a male to produce an offspring with the help of assisted reproduction technologies (ART): testis determinant Sry and spermatogonial proliferation factor Eif2s3y. Subsequently, we have shown that the function of these genes can be replaced by transgenic overexpression of their homologs, autosomally encoded Sox9 and X-chromosome encoded Eif2s3x. Males with Y chromosome contribution limited to two (XEif2s3yOSry), one (XEif2s3yOSox9 and XOSry,Eif2s3x), and no genes (XOSox9,Eif2s3x) produced haploid germ cells and sired offspring after ART. However, despite successful assisted reproductive outcome, they had smaller testes and displayed abnormal development of the seminiferous epithelium and testicular interstitium. Here we explored whether these testicular defects originated from altered pro-testis and pro-ovary factor signaling in genital ridges at the time of sex determination. Timed pregnancies were generated to obtain transgenic XEif2s3yOSry, XEif2s3yOSox9, XOSry,Eif2s3x, XOSox9,Eif2s3x, and wild-type XX and XY fetuses at 12.5 days post coitum. Dissected genital ridges were assessed for their morphology and anatomy, and expression of pro-testis and pro-ovary transcripts. All transgenic males displayed incomplete masculinization of gonadal shape, impaired development of testicular cords and gonadal vasculature, and decreased expression of factors promoting male pathway. Fetal gonad masculinization was more effective when sex determination was driven by the Sry transgene, in the presence of Y chromosome genes, and to a lesser extent a double dosage of X genes. The study adds to the understanding of the role of Y chromosome genes and their homologs during sex determination.
Collapse
Affiliation(s)
- Eglė A Ortega
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Quinci Salvador
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Mayumi Fernandez
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
9
|
Xu C, Dai Y, Mohsin A, Hang H, Zhuang Y, Guo M. Mapping molecular pathways for embryonic Sertoli cells derivation based on differentiation model of mouse embryonic stem cells. Stem Cell Res Ther 2020; 11:85. [PMID: 32102677 PMCID: PMC7045406 DOI: 10.1186/s13287-020-01600-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/27/2022] Open
Abstract
Background Embryonic Sertoli cells (eSCs) have been known for playing important roles in male reproductive development system. In current studies, eSCs were mainly generated from induced intermediate mesoderm. The deriving mechanism of eSCs has been unclear so far. Therefore, this work was aimed to reveal the molecular pathways during derivation of eSCs. Methods In this scenario, a differentiation model from mouse embryonic stem cells (mESCs) to eSCs was established through spatiotemporal control of 5 key factors, Wilms tumor 1 homolog (Wt1), GATA binding protein 4 (Gata4), nuclear receptor subfamily 5, group A, member 1 (Nr5a1, i.e., Sf1), SRY (sex determining region Y)-box 9 (Sox9), doublesex, and mab-3 related transcription factor 1 (Dmrt1). To investigate the molecular mechanism, these key factors were respectively manipulated through a light-switchable (light-on) system, tetracycline-switchable (Tet-on) system, and CRISPR/Cas9 knock out (KO) system. Results Via the established approach, some embryonic Sertoli-like cells (eSLCs) were induced from mESCs and formed ring-like or tubular-like structures. The key factors were respectively manipulated and revealed their roles in the derivation of these eSLCs. Based on these results, some molecular pathways were mapped during the development of coelomic epithelial somatic cells to eSCs. Conclusions This differentiation model provided a high controllability of some key factors and brought a novel insight into the deriving mechanism of Sertoli cells. Supplementary information accompanies this paper at 10.1186/s13287-020-01600-2.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yichen Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Wang J, Tian GG, Zheng Z, Li B, Xing Q, Wu J. Comprehensive Transcriptomic Analysis of Mouse Gonadal Development Involving Sexual Differentiation, Meiosis and Gametogenesis. Biol Proced Online 2019; 21:20. [PMID: 31636514 PMCID: PMC6794783 DOI: 10.1186/s12575-019-0108-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Mammalian gonadal development is crucial for fertility. Sexual differentiation, meiosis and gametogenesis are critical events in the process of gonadal development. Abnormalities in any of these events may cause infertility. However, owing to the complexity of these developmental events, the underlying molecular mechanisms are not fully understood and require further research. Results In this study, we employed RNA sequencing to examine transcriptome profiles of murine female and male gonads at crucial stages of these developmental events. By bioinformatics analysis, we identified a group of candidate genes that may participate in sexual differentiation, including Erbb3, Erbb4, and Prkg2. One hundred and two and 134 candidate genes that may be important for female and male gonadal development, respectively, were screened by analyzing the global gene expression patterns of developing female and male gonads. Weighted gene co-expression network analysis was performed on developing female gonads, and we identified a gene co-expression module related to meiosis. By alternative splicing analysis, we found that cassette-type exon and alternative start sites were the main forms of alternative splicing in developing gonads. A considerable portion of differentially expressed and alternatively spliced genes were involved in meiosis. Conclusion Taken together, our findings have enriched the gonadal transcriptome database and provided novel candidate genes and avenues to research the molecular mechanisms of sexual differentiation, meiosis, and gametogenesis. Supplementary information Supplementary information accompanies this paper at 10.1186/s12575-019-0108-y.
Collapse
Affiliation(s)
- Jian Wang
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Geng G Tian
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Zhuxia Zheng
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China
| | - Bo Li
- 2Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Qinghe Xing
- 4Children's Hospital & Institutes of Biomedical Sciences, Fudan University, 131 Dong-Chuan Road, Shanghai, 200032 China
| | - Ji Wu
- 1Renji Hospital, Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032 China.,2Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China.,3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032 China
| |
Collapse
|
11
|
Abstract
The bipotential nature of cell types in the early developing gonad and the process of sex determination leading to either testis or ovary differentiation makes this an interesting system in which to study transcriptional regulation of gene expression and cell fate decisions. SOX9 is a transcription factor with multiple roles during development, including being a key player in mediating testis differentiation and therefore subsequent male development. Loss of Sox9 expression in both humans and mice results in XY female development, whereas its inappropriate activation in XX embryonic gonads can give male development. Multiple cases of Disorders of Sex Development in human patients or sex reversal in mice and other vertebrates can be explained by mutations affecting upstream regulators of Sox9 expression, such as the product of the Y chromosome gene Sry that triggers testis differentiation. Other cases are due to mutations in the Sox9 gene itself, including its own regulatory region. Indeed, rearrangements in and around the Sox9 genomic locus indicate the presence of multiple critical enhancers and the complex nature of its regulation. Here we summarize what is known about the role of Sox9 and its regulation during gonad development, including recently discovered critical enhancers. We also discuss higher order chromatin organization and how this might be involved. We end with some interesting future directions that have the potential to further enrich our understanding on the complex, multi-layered regulation controlling Sox9 expression in the gonads.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
12
|
Porras-Gómez TJ, Martínez-Juárez A, Moreno-Mendoza N. Gonadal morphogenesis and establishment of the germline in the phyllostomid bat Sturnira lilium. Acta Histochem 2017; 119:671-679. [PMID: 28823522 DOI: 10.1016/j.acthis.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022]
Abstract
In vertebrates such as the mouse and the human, primordial germ cells (PGCs) arise at the base of the allantois and are carried to the epithelium of the posterior intestine, to later migrate to the primordial gonads. In the case of bats, almost nothing is known about this process. To clarify the dynamics of PGCs during gonadal morphogenesis in the phyllostomid bat Sturnira lilium, the proteins for the Ddx4, Sox9 and Mis genes were detected in the gonads of embryos at different stages of development. We identified 15 stages (St) of embryonic development in Sturnira lilium. We found that the formation of the genital ridge and the establishment of the undifferentiated gonad take place between stages 11 and 14. The onset of morphological differentiation in the gonad is first detected in the male gonads at St17. The first PGCs in meiosis are detected in the ovary at St19, whereas in the testicles, the PGCs were in mitotic arrest. Structural changes leading to testicular and ovarian development in Sturnira lilium are observed to be similar to those described for the mouse; however, differences will be established concerning the time taken for these processes to occur.
Collapse
|