1
|
Liver X Receptor Regulation of Glial Cell Functions in the CNS. Biomedicines 2022; 10:biomedicines10092165. [PMID: 36140266 PMCID: PMC9496004 DOI: 10.3390/biomedicines10092165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In this review, we discuss the role of liver X receptors (LXRs) in glial cells (microglia, oligodendrocytes and astrocytes) in the central nervous system (CNS). LXRs are oxysterol-activated nuclear receptors that, in adults, regulate genes involved in cholesterol homeostasis, the modulation of inflammatory responses and glutamate homeostasis. The study of LXR knockout mice has revealed that LXRβ plays a key role in maintaining the health of dopaminergic neurons in the substantia nigra, large motor neurons in the spinal cord and retinal ganglion cells in the eye. In the peripheral nervous system (PNS), LXRβ is responsible for the health of the spiral ganglion neurons (SGNs) in the cochlea. In addition, LXRs are essential for the homeostasis of the cerebrospinal fluid (CSF), and in LXRαβ−/− mice, the lateral ventricles are empty and lined with lipid-laden cells. As LXRαβ−/− mice age, lipid vacuoles accumulate in astrocytes surrounding blood vessels. By seven months of age, motor coordination becomes impaired, and there is a loss of motor neurons in the spinal cord of LXRβ−/− mice. During development, migration of neurons in the cortex and cerebellum is retarded in LXRβ−/− mice. Since LXRs are not expressed in dopaminergic or motor neurons in adult mice, the neuroprotective effects of LXRs appear to come from LXRs in glial cells where they are expressed. However, despite the numerous neurological deficits in LXR−/− rodents, multiple sclerosis has the clear distinction of being the only human neurodegenerative disease in which defective LXR signaling has been identified. In this review, we summarize the regulation and functions of LXRs in glial cells and analyze how targeting LXRs in glial cells might, in the future, be used to treat neurodegenerative diseases and, perhaps, disorders caused by aberrant neuronal migration during development.
Collapse
|
2
|
Baldassarro VA, Flagelli A, Sannia M, Calzà L. Nuclear receptors and differentiation of oligodendrocyte precursor cells. VITAMINS AND HORMONES 2021; 116:389-407. [PMID: 33752826 DOI: 10.1016/bs.vh.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oligodendrocytes are the cells responsible for myelin formation during development and in adulthood, both for normal myelin turnover and myelin repair. These highly specialized cells derive from the oligodendrocyte precursor cells (OPCs), through a complex differentiation process involving genetic and epigenetic regulation mechanisms, which switch the phenotype from a migratory and replicative precursor to a mature post-mitotic cell. The process is regulated by a plethora of molecules, involving neurotransmitters, growth factors, hormones and other small molecules, and is mainly driven by nuclear receptors (NRs). NRs are transcription factors with heterogeneous ligand-dependent and independent actions which differ for the cell target, the responsive gene and the formation of NR homo- or heterodimers. This chapter highlights the role of NRs in regulating OPC differentiation, also in view of drug discovery strategies aimed at targeting pathological conditions which interfere with both developmental myelination and remyelination in adulthood.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy.
| | - Alessandra Flagelli
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Michele Sannia
- Interdepartmental Center for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Montecatone Rehabilitation Institute, Imola, Bologna, Italy; IRET Foundation, Ozzano Emilia, Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Maas DA, Martens MB, Priovoulos N, Zuure WA, Homberg JR, Nait-Oumesmar B, Martens GJM. Key role for lipids in cognitive symptoms of schizophrenia. Transl Psychiatry 2020; 10:399. [PMID: 33184259 PMCID: PMC7665187 DOI: 10.1038/s41398-020-01084-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia (SZ) is a psychiatric disorder with a convoluted etiology that includes cognitive symptoms, which arise from among others a dysfunctional dorsolateral prefrontal cortex (dlPFC). In our search for the molecular underpinnings of the cognitive deficits in SZ, we here performed RNA sequencing of gray matter from the dlPFC of SZ patients and controls. We found that the differentially expressed RNAs were enriched for mRNAs involved in the Liver X Receptor/Retinoid X Receptor (LXR/RXR) lipid metabolism pathway. Components of the LXR/RXR pathway were upregulated in gray matter but not in white matter of SZ dlPFC. Intriguingly, an analysis for shared genetic etiology, using two SZ genome-wide association studies (GWASs) and GWAS data for 514 metabolites, revealed genetic overlap between SZ and acylcarnitines, VLDL lipids, and fatty acid metabolites, which are all linked to the LXR/RXR signaling pathway. Furthermore, analysis of structural T1-weighted magnetic resonance imaging in combination with cognitive behavioral data showed that the lipid content of dlPFC gray matter is lower in SZ patients than in controls and correlates with a tendency towards reduced accuracy in the dlPFC-dependent task-switching test. We conclude that aberrations in LXR/RXR-regulated lipid metabolism lead to a decreased lipid content in SZ dlPFC that correlates with reduced cognitive performance.
Collapse
Affiliation(s)
- Dorien A. Maas
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands ,Sorbonne Université, Paris Brain Institute – ICM, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France ,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Marijn B. Martens
- NeuroDrug Research Ltd, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Nikos Priovoulos
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam-Zuidoost, 1105 BK Amsterdam, The Netherlands
| | - Wieteke A. Zuure
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Brahim Nait-Oumesmar
- Sorbonne Université, Paris Brain Institute – ICM, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gerard J. M. Martens
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands ,NeuroDrug Research Ltd, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
4
|
Santos AK, Vieira MS, Vasconcellos R, Goulart VAM, Kihara AH, Resende RR. Decoding cell signalling and regulation of oligodendrocyte differentiation. Semin Cell Dev Biol 2018; 95:54-73. [PMID: 29782926 DOI: 10.1016/j.semcdb.2018.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022]
Abstract
Oligodendrocytes are fundamental for the functioning of the nervous system; they participate in several cellular processes, including axonal myelination and metabolic maintenance for astrocytes and neurons. In the mammalian nervous system, they are produced through waves of proliferation and differentiation, which occur during embryogenesis. However, oligodendrocytes and their precursors continue to be generated during adulthood from specific niches of stem cells that were not recruited during development. Deficiencies in the formation and maturation of these cells can generate pathologies mainly related to myelination. Understanding the mechanisms involved in oligodendrocyte development, from the precursor to mature cell level, will allow inferring therapies and treatments for associated pathologies and disorders. Such mechanisms include cell signalling pathways that involve many growth factors, small metabolic molecules, non-coding RNAs, and transcription factors, as well as specific elements of the extracellular matrix, which act in a coordinated temporal and spatial manner according to a given stimulus. Deciphering those aspects will allow researchers to replicate them in vitro in a controlled environment and thus mimic oligodendrocyte maturation to understand the role of oligodendrocytes in myelination in pathologies and normal conditions. In this study, we review these aspects, based on the most recent in vivo and in vitro data on oligodendrocyte generation and differentiation.
Collapse
Affiliation(s)
- A K Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - M S Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - R Vasconcellos
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - V A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - A H Kihara
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - R R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|