1
|
Xue Y, Shi W, Lun B, Kan M, Jia M, Wu Y, Yang L. Preclinical research models for endometrial cancer: development and selection of animal models. Front Oncol 2025; 15:1512616. [PMID: 39975595 PMCID: PMC11835666 DOI: 10.3389/fonc.2025.1512616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy in developed countries, with rising incidence in recent years. Experimental animal models are crucial for studying the pathogenesis, advancing diagnostic methods, and developing new treatments. We review five main EC animal models. The use of spontaneous and chemically-induced models has decreased, with transgenic mouse and xenograft models becoming the most widely used. These models better simulate tumor molecular mechanisms and treatments, with the organoid-based patient-derived xenograft model (O-PDX) showing great promise in drug screening and personalized therapy. The application of humanized models remains limited due to technical challenges and high costs. In this review, we highlight the strengths and limitations of each model to guide researchers in their selection.
Collapse
Affiliation(s)
- Yang Xue
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Lun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meilin Kan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengling Jia
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuelin Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China
| |
Collapse
|
2
|
Tran DN, Rozen V, Nguyen LTK, Jung JS, Coghill LM, Hunter MI, Kim TH, Yoo JY, Jeong JW. ARG1 Is a Potential Prognostic Marker in Metastatic Endometrial Cancer. Reprod Sci 2024; 31:1632-1641. [PMID: 38388922 PMCID: PMC11648120 DOI: 10.1007/s43032-024-01493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy. While the majority of patients present with early-stage and low-grade EC and have an excellent prognosis, a subset has metastatic disease at presentation or develops distant recurrence after initial treatment of the primary. However, the lack of prognostic biomarkers for metastatic EC is a critical barrier. Arginase 1 (ARG1) regulates the last step of the urea cycle, and an increase in ARG1 has been correlated as a poor prognostic factor in a variety of cancers. In the present study, ARG1 expression was evaluated as a potential prognostic marker for metastatic EC in endometrial hyperplasia and cancer of mice with Pten mutation as well as Pten and Mig-6 double mutations. While Pten mutation in the uterus is not sufficient for distant metastasis, mice with concurrent ablation of Mig-6 and Pten develop distant metastasis. Our immunostaining and RT-qPCR analysis revealed that the expression of ARG1 in early stage of EC as well as endometrial hyperplasia from mice deficient in Mig-6 and Pten mutations significantly increased compared to Pten mutation in the uterus. The results suggest that a high level of ARG1 is associated with poor prognosis in association with EC of mouse.
Collapse
Affiliation(s)
- Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA
| | - Valery Rozen
- College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Loan Thi Kim Nguyen
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA
| | - Jin-Seok Jung
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, 1 Yonseidae-Gil, Wonju, Gangwon-Do, 26493, Republic of Korea
| | - Lyndon M Coghill
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Mark I Hunter
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, 1 Yonseidae-Gil, Wonju, Gangwon-Do, 26493, Republic of Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Chen J, Dai S, Zhao L, Peng Y, Sun C, Peng H, Zhong Q, Quan Y, Li Y, Chen X, Pan X, Zhong A, Wang M, Zhang M, Yang S, Lu Y, Lian Z, Liu Y, Zhou S, Li Z, Na F, Chen C. A New Type of Endometrial Cancer Models in Mice Revealing the Functional Roles of Genetic Drivers and Exploring their Susceptibilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300383. [PMID: 37340596 PMCID: PMC10460855 DOI: 10.1002/advs.202300383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Indexed: 06/22/2023]
Abstract
Endometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported. These models faithfully recapitulate the molecular and pathohistological characteristics of human diseases. The authors names these models and similar models for other cancers as organoid-initiated precision cancer models (OPCMs). Importantly, this approach can conveniently introduce any driver mutation or a combination of driver mutations. Using these models,it is shown that the mutations in Pik3ca and Pik3r1 cooperate with Pten loss to promote endometrial adenocarcinoma in mice. In contrast, the Kras G12D mutati led to endometrial squamous cell carcinoma. Then, tumor organoids are derived from these mouse EC models and performed high-throughput drug screening and validation. The results reveal distinct vulnerabilities of ECs with different mutations. Taken together, this study develops a multiplexing approach to model EC in mice and demonstrates its value for understanding the pathology of and exploring the potential treatments for this malignancy.
Collapse
Affiliation(s)
- Jingyao Chen
- Precision Medicine Research CenterState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Siqi Dai
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yiman Peng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Chongen Sun
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Hongling Peng
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Qian Zhong
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Yuan Quan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yue Li
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ailing Zhong
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Manli Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - You Lu
- Division of Thoracic Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengdu610041China
- Laboratory of Clinical Cell Therapy, West China HospitalSichuan UniversityChengdu610041China
| | - Zhong Lian
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shengtao Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Zhengyu Li
- West China Second HospitalSichuan UniversityChengdu610041China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Chong Chen
- Precision Medicine Research CenterState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
4
|
Tran DN, Rozen V, Hunter MI, Kim TH, Jeong JW. ARG1 is a potential prognostic marker in metastatic and recurrent endometrial cancer. RESEARCH SQUARE 2023:rs.3.rs-2917380. [PMID: 37503068 PMCID: PMC10371158 DOI: 10.21203/rs.3.rs-2917380/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy. While the majority of patients present with early-stage and low-grade EC and have an excellent prognosis, a subset has metastatic disease at presentation, or develops distant recurrence after initial treatment of the primary. However, the lack of prognostic biomarkers for metastatic EC is a critical barrier. Arginase 1 (ARG1) regulates the last step of the urea cycle, and an increase in ARG1 has been correlated as a poor prognostic factor in a variety of cancers. In the present study, ARG1 expression was evaluated as a potential prognostic marker for metastatic EC in endometrial hyperplasia and cancer of mice with Pten mutation as well as Pten and Mig-6 double mutations. While Pten mutation in the uterus is not sufficient for distant metastasis, mice with concurrent ablation of Mig-6 and Pten develop distant metastasis. Our immunostaining and RT-qPCR analysis revealed that the expression of ARG1 in early stage of EC as well as endometrial hyperplasia from mice deficient in Mig-6 and Pten mutations significantly increased compared to Pten mutation in the uterus. The results suggest that a high level of ARG1 is associated with poor prognosis in association with EC of mouse.
Collapse
Affiliation(s)
| | - Valery Rozen
- Michigan State University College of Human Medicine
| | | | | | | |
Collapse
|
5
|
EFSA Panel on Plant Protection Products and their Residues (PPR), Hernandez‐Jerez AF, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping CJ, Widenfalk A, Wilks M, Wolterink G, Angeli K, Recordati C, Van Durseen M, Aiassa E, Lanzoni A, Lostia A, Martino L, Guajardo IPM, Panzarea M, Terron A, Marinovich M. Development of adverse outcome pathways relevant for the identification of substances having endocrine disruption properties Uterine adenocarcinoma as adverse outcome. EFSA J 2023; 21:e07744. [PMID: 36818642 PMCID: PMC9926893 DOI: 10.2903/j.efsa.2023.7744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Development of adverse outcome pathways (AOPs) for uterine adenocarcinoma can provide a practical tool to implement the EFSA-ECHA Guidance (2018) for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. AOPs can give indications about the strength of the relationship between an adverse outcome (intended as a human health outcome) and chemicals (pesticides but not only) affecting the pathways. In this scientific opinion, the PPR Panel explored the development of AOPs for uterine adenocarcinoma. An evidence-based approach methodology was applied, and literature reviews were produced using a structured framework assuring transparency, objectivity, and comprehensiveness. Several AOPs were developed; these converged to a common critical node, that is increased estradiol availability in the uterus followed by estrogen receptor activation in the endometrium; therefore, a putative AOP network was considered. An uncertainty analysis and a probabilistic quantification of the weight of evidence have been carried out via expert knowledge elicitation for each set of MIEs/KEs/KERs included in individual AOPs. The collected data on the AOP network were evaluated qualitatively, whereas a quantitative uncertainty analysis for weight of the AOP network certainty has not been performed. Recommendations are provided, including exploring further the uncertainties identified in the AOPs and putative AOP network; further methodological developments for quantifying the certainty of the KERs and of the overall AOPs and AOP network; and investigating of NAMs applications in the context of some of the MIEs/KEs currently part of the putative AOP network developed.
Collapse
|
6
|
MIG-6 Is Critical for Progesterone Responsiveness in Human Complex Atypical Hyperplasia and Early-Stage Endometrial Cancer. Int J Mol Sci 2022; 23:ijms232314596. [PMID: 36498921 PMCID: PMC9738720 DOI: 10.3390/ijms232314596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Women with complex atypical hyperplasia (CAH) or early-stage endometrioid endometrial cancer (EEC) are candidates for fertility preservation. The most common approach is progesterone (P4) therapy and deferral of hysterectomy until after completion of childbearing. However, P4 therapy response rates vary, and molecular mechanisms behind P4 resistance are poorly understood. One potential molecular cause of P4 resistance is a loss or attenuation of PGR expression. Mitogen-inducible gene 6 (MIG-6) is critical for P4 responsiveness. MIG-6 protein expression in the endometrial epithelial and stromal cells from women with CAH and EEC was significantly lower compared to women without CAH or EEC. The P4-responsive women (10/15) exhibited an increase of MIG-6 expression in epithelial and stromal cells compared to P4-resistant women (5/15). In addition, immunohistochemical analysis for PGR results showed that stromal PGR levels are significantly higher in P4-responsive women compared to P4-resistant women, whereas epithelial PGR expression was not different. A reverse correlation of MIG-6 and pAKT levels was observed in early-stage EEC patients. Studies strongly suggest that loss of MIG-6 and PGR and activation of pAKT lead to P4 resistance in CAH and EEC. These results will help to elucidate the molecular mechanism leading to P4 resistance in CAH and EEC.
Collapse
|
7
|
Dottino JA, Zhang Q, Loose DS, Fellman B, Melendez BD, Borthwick MS, McKenzie LJ, Yuan Y, Yang RK, Broaddus RR, Lu KH, Soliman PT, Yates MS. Endometrial biomarkers in premenopausal women with obesity: an at-risk cohort. Am J Obstet Gynecol 2021; 224:278.e1-278.e14. [PMID: 32835719 DOI: 10.1016/j.ajog.2020.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obesity is a well-known risk factor for endometrial cancer, but the mechanisms of obesity-related carcinogenesis are not well defined, particularly for premenopausal women. With the continuing obesity epidemic, increases in the incidence of endometrial cancer and a younger age of diagnosis are often attributed to a hyperestrogenic state created by hormone production in adipose tissue, but significant knowledge gaps remain. The balance of estrogen-responsive signals has not been defined in the endometrium of premenopausal women with obesity, where obesity may not create hyperestrogenism in the context of ovaries being the primary source of estrogen production. Obesity is associated with a state of low-grade, chronic inflammation that can promote tumorigenesis, and it is also known that hormonal changes alter the immune microenvironment of the endometrium. However, limited research has been conducted on endometrial immune-response changes in women who have an increased risk for cancer due to obesity. OBJECTIVE Endometrial estrogen-regulated biomarkers, previously shown to be dysregulated in endometrial cancer, were evaluated in a cohort of premenopausal women to determine if obesity is associated with differences in the biomarker expression levels, which might reflect an altered risk of developing cancer. The expression of a multiplexed panel of immune-related genes was also evaluated for expression differences related to obesity. STUDY DESIGN Premenopausal women with a body mass index of ≥30 kg/m2 (n=97) or a body mass index of ≤25 kg/m2 (n=33) were prospectively enrolled in this cross-sectional study, which included the assessment of serum metabolic markers and a timed endometrial biopsy for pathologic evaluation, hormone-regulated biomarker analysis, and immune response gene expression analysis. Medical and gynecologic histories were obtained. Endometrial gene expression markers were also compared across the body mass index groups in a previous cohort of premenopausal women with an inherited cancer risk (Lynch syndrome). RESULTS In addition to known systemic metabolic differences, histologically normal endometria from women with obesity showed a decrease in gene expression of progesterone receptor (P=.0027) and the estrogen-induced genes retinaldehyde dehydrogenase 2 (P=.008), insulin-like growth factor 1 (P=.016), and survivin (P=.042) when compared with women without obesity. The endometrial biomarkers insulin-like growth factor 1, survivin, and progesterone receptor remained statistically significant in multivariate linear regression models. In contrast, women with obesity and Lynch syndrome had an increased expression of insulin-like growth factor 1 (P=.017). There were no differences in endometrial proliferation, and limited endometrial immune differences were observed. CONCLUSION When comparing premenopausal women with and without obesity in the absence of endometrial pathology or an inherited cancer risk, the expression of the endometrial biomarkers does not reflect a local hyperestrogenic environment, but it instead reflects a decreased cancer risk profile that may be indicative of a compensated state. In describing premenopausal endometrial cancer risk, it may be insufficient to attribute a high-risk state to obesity alone; further studies are warranted to evaluate individualized biomarker profiles for differences in the hormone-responsive signals or immune response. In patients with Lynch syndrome, the endometrial biomarker profile suggests that obesity further increases the risk of developing cancer.
Collapse
|
8
|
Fbxw7 is a driver of uterine carcinosarcoma by promoting epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2019; 116:25880-25890. [PMID: 31772025 PMCID: PMC6926017 DOI: 10.1073/pnas.1911310116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Uterine carcinosarcoma (UCS) is an aggressive endometrial cancer variant distinguished from endometrial adenocarcinoma (EC) by admixed malignant epithelial and mesenchymal components (carcinoma and sarcoma). The molecular events underlying UCS are enigmatic, as cancer gene mutations are generally shared among UCS/EC. We take advantage of genetic approaches in mice to show that inactivation of Fbxw7 and Pten results in UCS through spontaneous acquisition of mutations in a third gene (Tp53), arguing for strong biological selection and synergism in UCS. We used this UCS model including tumor-derived cell lines to show that Fbxw7 loss drives epithelial–mesenchymal transition, explaining Fbxw7’s role in UCS. This model system argues that simultaneous genetic defects in 3 distinct pathways (Fbxw7, Pten/PI3K, Tp53) converge in UCS genesis. Uterine carcinosarcoma is an aggressive variant of endometrial carcinoma characterized by unusual histologic features including discrete malignant epithelial and mesenchymal components (carcinoma and sarcoma). Recent studies have confirmed a monoclonal origin, and comprehensive genomic characterizations have identified mutations such as Tp53 and Pten. However, the biological origins and specific combination of driver events underpinning uterine carcinosarcoma have remained mysterious. Here, we explored the role of the tumor suppressor Fbxw7 in endometrial cancer through defined genetic model systems. Inactivation of Fbxw7 and Pten resulted in the formation of precancerous lesions (endometrioid intraepithelial neoplasia) and well-differentiated endometrioid adenocarcinomas. Surprisingly, all adenocarcinomas eventually developed into definitive uterine carcinosarcomas with carcinomatous and sarcomatous elements including heterologous differentiation, yielding a faithful genetically engineered model of this cancer type. Genomic analysis showed that most tumors spontaneously acquired Trp53 mutations, pointing to a triad of pathways (p53, PI3K, and Fbxw7) as the critical combination underpinning uterine carcinosarcoma, and to Fbxw7 as a key driver of this enigmatic endometrial cancer type. Lineage tracing provided formal genetic proof that the uterine carcinosarcoma cell of origin is an endometrial epithelial cell that subsequently undergoes a prominent epithelial–mesenchymal transition underlying the attainment of a highly invasive phenotype specifically driven by Fbxw7.
Collapse
|
9
|
Van Nyen T, Moiola CP, Colas E, Annibali D, Amant F. Modeling Endometrial Cancer: Past, Present, and Future. Int J Mol Sci 2018; 19:E2348. [PMID: 30096949 PMCID: PMC6121384 DOI: 10.3390/ijms19082348] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer is the most common type of cancer of the female reproductive tract. Although prognosis is generally good for patients with low-grade and early-stage diseases, the outcomes for high-grade and metastatic/recurrent cases remain poor, since traditional chemotherapy regimens based on platinum and taxanes have limited effects. No targeted agents have been approved so far, although several new drugs have been tested without striking results in clinical trials. Over the last decades, many efforts have been made towards the establishment and development of preclinical models, aiming at recapitulating the structural and molecular determinants of the disease. Here, we present an overview of the most commonly used in vitro and in vivo models and discuss their peculiar features, describing their main applications and the value in the advancement of both fundamental and translational endometrial cancer research.
Collapse
Affiliation(s)
- Tom Van Nyen
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
| | - Cristian P Moiola
- Pathological Oncology Group, Biomedical Research Institute of Lleida (IRBLLEIDA), University Hospital Arnau de Vilanova, 25198 Lleida, Spain.
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, CIBERONC, 08035 Barcelona, Spain.
| | - Eva Colas
- Biomedical Research Group in Gynecology, Vall Hebron Institute of Research, CIBERONC, 08035 Barcelona, Spain.
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
| | - Frédéric Amant
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium.
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (Avl-NKI) and University Medical Centra (UMC), 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|