1
|
Nemati M, Bani F, Sepasi T, Zamiri RE, Rasmi Y, Kahroba H, Rahbarghazi R, Sadeghi MR, Wang Y, Zarebkohan A, Gao H. Unraveling the Effect of Breast Cancer Patients' Plasma on the Targeting Ability of Folic Acid-Modified Chitosan Nanoparticles. Mol Pharm 2021; 18:4341-4353. [PMID: 34779630 DOI: 10.1021/acs.molpharmaceut.1c00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of protein corona (PC) around nanoparticles (NPs) has been reported inside biological conditions. This effect can alter delivery capacity toward the targeted tissues. Here, we synthesized folic acid-modified chitosan NPs (FA-CS NPs) using different concentrations of folic acid (5, 10, and 20%). FA-CS NPs were exposed to plasmas of breast cancer patients and healthy donors to evaluate the possibility of PC formation. We also monitored uptake efficiency in in vitro conditions after incubation with human breast cancer cell line MDA-MB-231 and monocyte/macrophage-like Raw264.7 cells. Data showed that the formation of PC around FA-CS NPs can change physicochemical properties coincided with the rise in NP size and negative surface charge. SDS-PAGE electrophoresis revealed differences in the type and content rate of plasma proteins attached to NP surface in a personalized manner. Based on MTT data, the formation of PC around NPs did not exert cytotoxic effects on MDA-MB-231 cells while this phenomenon reduced uptake rate. Fluorescence imaging and flow cytometry analyses revealed reduced cellular internalization rate in NPs exposed to patients' plasma compared to the control group. In contrast to breast MDA-MB-231 cells, Raw264.7 cells efficiently adsorbed the bare and PC-coated NPs from both sources, indicating the involvement of ligand-receptor-dependent and independent cellular engulfment. These data showed that the PC formed on the FA-CS NPs is entirely different in breast cancer patients and healthy counterparts. PC derived from patients' plasma almost abolishes the targeting efficiency of FA-CS NPs even in different mechanisms, while this behavior was not shown in the control group. Surprisingly, Raw264.7 cells strongly adsorbed the PC-coated NPs, especially when these particles were in the presence of patients' sera. It is strongly suggested that the formation of PC around can affect delivering capacity of FA-CS NPs to cancer cells. It seems that the PC-coated FA-CS NPs can be used as an efficient delivery strategy for the transfer of specific biomolecules in immune system disorders.
Collapse
Affiliation(s)
- Mahdieh Nemati
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Reza Eghdam Zamiri
- Department of Radiation Oncology, Shahid Madani Hospital, Tabriz University of Medical Science, Tabriz 5166/15731, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Mohammed Reza Sadeghi
- Department of Molecular Medicine, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Yazhen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Ramos Campos EV, Proença PLDF, Doretto-Silva L, Andrade-Oliveira V, Fraceto LF, de Araujo DR. Trends in nanoformulations for atopic dermatitis treatment. Expert Opin Drug Deliv 2020; 17:1615-1630. [PMID: 32816566 DOI: 10.1080/17425247.2020.1813107] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Immunological skin dysfunctions trigger the synthesis and release of inflammatory cytokines, which induce recurrent skin inflammation associated with chronic itching, inefficient barrier behavior, and reduced skin hydration. These features characterize a multifactorial chronic inflammatory disease atopic dermatitis (AD). AD therapy includes anti-inflammatory drugs and immunosuppressors as well as non-pharmacological alternatives such as emollients, moisturizers, and lipids (ceramides, phospholipids) for modulating the skin hydration and the barrier repair. However, these treatments are inconvenient with low drug skin penetration and insufficient maintenance on the application site. AREAS COVERED Nanotechnology-based therapies can be a great strategy to overcome these limitations. Considering the particular skin morphological organization, SC lipid matrix composition, and immunological functions/features related to nanocarriers, this review focuses on recent developments of nanoparticulate systems (polymeric, lipid-based, inorganic) as parent or hybrid systems including their chemical composition, physico-chemical and biopharmaceutical properties, and differential characteristics that evaluate them as new effective drug-delivery systems for AD treatment. EXPERT OPINION Despite the several innovative formulations, research in nanotechnology-based carriers should address specific aspects such as the use of moisturizers associated to pharmacological therapies, toxicity studies, scale-up production processes and the nanocarrier influence on immunological response. These approaches will help researchers choose the most appropriate nanocarrier system and widen nanomedicine applications and commercialization.
Collapse
Affiliation(s)
| | - Patrícia Luiza De Freitas Proença
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | - Lorena Doretto-Silva
- Human and Natural Sciences Center, Federal University of ABC , Santo André, SP, Brazil
| | | | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, São Paulo State University - UNESP, Institute of Science and Technology , Sorocaba, SP, Brazil
| | | |
Collapse
|
3
|
Babikova D, Kalinova R, Momekova D, Ugrinova I, Momekov G, Dimitrov I. Multifunctional Polymer Nanocarrier for Efficient Targeted Cellular and Subcellular Anticancer Drug Delivery. ACS Biomater Sci Eng 2019; 5:2271-2283. [DOI: 10.1021/acsbiomaterials.9b00192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dimitrina Babikova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl 103A, 1113 Sofia, Bulgaria
| | - Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl 103A, 1113 Sofia, Bulgaria
| | - Denitsa Momekova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Iva Ugrinova
- Institute of Molecular Biology, “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl 21, 1113 Sofia, Bulgaria
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, Bl 103A, 1113 Sofia, Bulgaria
| |
Collapse
|