1
|
Carter-Su C, Argetsinger LS, Svezhova N. 2022 Cannon lecture: an ode to signal transduction: how the growth hormone pathway revealed insight into height, malignancy, and obesity. Am J Physiol Endocrinol Metab 2023; 325:E425-E437. [PMID: 37672248 PMCID: PMC10874654 DOI: 10.1152/ajpendo.00265.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Walter Cannon was a highly regarded American neurologist and physiologist with extremely broad interests. In the tradition of Cannon and his broad interests, we discuss our laboratory's multifaceted work in signal transduction over the past 40+ years. We show how our questioning of how growth hormone (GH) in the blood communicates with cells throughout the body to promote body growth and regulate body metabolism led to insight into not only body height but also important regulators of malignancy and body weight. Highlights include finding that 1) A critical initiating step in GH signal transduction is GH activating the GH receptor-associated tyrosine kinase JAK2; 2) GH activation of JAK2 leads to activation of a number of signaling proteins, including STAT transcription factors; 3) JAK2 is autophosphorylated on multiple tyrosines that regulate the activity of JAK2 and recruit signaling proteins to GH/GH receptor/JAK2 complexes; 4) Constitutively activated STAT proteins are associated with cancer; 5) GH activation of JAK2 recruits the adapter protein SH2B1 to GH/GH receptor/JAK2 complexes where it facilitates GH regulation of the actin cytoskeleton and motility; and 6) SH2B1 is recruited to other receptors in the brain, where it enhances satiety, most likely in part by regulating leptin action and neuronal connections of appetite-regulating neurons. These findings have led to increased understanding of how GH functions, as well as therapeutic interventions for certain cancer and obese individuals, thereby reinforcing the great importance of supporting basic research since one never knows ahead of time what important insight it can provide.
Collapse
Affiliation(s)
- Christin Carter-Su
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | | - Nadezhda Svezhova
- University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Kassem N, Araya-Secchi R, Bugge K, Barclay A, Steinocher H, Khondker A, Wang Y, Lenard AJ, Bürck J, Sahin C, Ulrich AS, Landreh M, Pedersen MC, Rheinstädter MC, Pedersen PA, Lindorff-Larsen K, Arleth L, Kragelund BB. Order and disorder-An integrative structure of the full-length human growth hormone receptor. SCIENCE ADVANCES 2021; 7:7/27/eabh3805. [PMID: 34193419 PMCID: PMC8245047 DOI: 10.1126/sciadv.abh3805] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 05/13/2023]
Abstract
Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology.
Collapse
Affiliation(s)
- Noah Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Raul Araya-Secchi
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Abigail Barclay
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Helena Steinocher
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Yong Wang
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Aneta J Lenard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Cagla Sahin
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Michael Landreh
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Martin Cramer Pedersen
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| | - Lise Arleth
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
4
|
Chhabra Y, Lee CMM, Müller AF, Brooks AJ. GHR signalling: Receptor activation and degradation mechanisms. Mol Cell Endocrinol 2021; 520:111075. [PMID: 33181235 DOI: 10.1016/j.mce.2020.111075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) actions via initiating cell signalling through the GH receptor (GHR) are important for many physiological processes, in addition to its well-known role in regulating growth. The activation of JAK-STAT signalling by GH is well characterized, however knowledge on GH activation of SRC family kinases (SFKs) is still limited. In this review we summarise the collective knowledge on the activation, regulation, and downstream signalling of GHR. We highlight studies on GH activation of SFKs and the important outcome of this signalling pathway with a focus on the different degradation mechanisms that can regulate GHR availability since this is an area that warrants further study considering its role in tumour progression.
Collapse
Affiliation(s)
- Yash Chhabra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21231, USA
| | - Christine M M Lee
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Alexandra Franziska Müller
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew J Brooks
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
Mendoza-Porras O, Pires PRL, Goswami H, Meirelles FV, Colgrave ML, Wijffels G. Cytokines in the grass, a lesson learnt: Measuring cytokines in plasma using multiple reaction monitoring mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8723. [PMID: 31922636 DOI: 10.1002/rcm.8723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Cytokines are cell regulatory molecules of high importance as indicators for homeostasis and pathology in many species. The current method to measure cytokines in body fluids is reagent dependent, requiring highly specific paired antibodies. METHODS A liquid chromatography/multiple reaction monitoring mass spectrometry (LC/MRM-MS)-based approach was developed to simultaneously establish the limits of detection (LODs) and quantification (LOQs) for recombinant cytokines IL-1β, IL-6, IFNγ and TNFα as pure standards and in bovine sera. All experimental LC/MRM-MS data are available at CSIRO Data Access Portal repository under identifier doi.org/10.25919/5de8a0232a862. RESULTS The present method enabled LODs and LOQs as low as 1.05 and 1.12 fmol/μL in the experiment comprised of pure standards. Comparable results were obtained in the experiment where digested cytokines were mixed with pre-digested sera proteins. The intrinsic matrix effects were evident when intact cytokines were co-digested within undiluted and undigested sera decreasing the ability to detect and quantify cytokines by 10,000-fold compared with pure standards and pre-digested sera. CONCLUSIONS The developed LC/MRM-MS method provided insights into the difficulties in detecting the target peptides when embedded in complex matrices. Nonetheless, the method may potentially be readily applied in biomarker-focused research interrogating fluids of lesser complexity such as synovial fluid, cerebrospinal fluid and tissue culture media.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Pedro R L Pires
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
- University of São Paulo, Av Duque de Caxais Morte 225, Jardim Elite, São Paulo, Brazil
| | - Hareshwar Goswami
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Flavio V Meirelles
- University of São Paulo, Av Duque de Caxais Morte 225, Jardim Elite, São Paulo, Brazil
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| | - Gene Wijffels
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, Queensland, 4067, Australia
| |
Collapse
|