1
|
Jano S, Chatburn A, R Cross Z, Schlesewsky M, Bornkessel-Schlesewsky I. How predictability and individual alpha frequency shape memory: Insights from an event-related potential investigation. Neurobiol Learn Mem 2024; 216:108006. [PMID: 39566839 DOI: 10.1016/j.nlm.2024.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 10/24/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Prediction and memory are strongly intertwined, with predictions relying on memory retrieval, whilst also influencing memory encoding. However, it is unclear how predictability influences explicit memory performance, and how individual neural factors may modulate this relationship. The current study sought to investigate the effect of predictability on memory processing with an analysis of the N400 event-related potential in a context extending beyond language. Participants (N = 48, females = 33) completed a study-test paradigm where they first viewed predictable and unpredictable four-item 'ABCD' sequences of outdoor scene images, whilst their brain activity was recorded using electroencephalography. Subsequently, their memory for the images was tested, and N400 patterns during learning were compared with memory outcomes. Behavioural results revealed better memory for images in predictable sequences in contrast to unpredictable sequences. Memory was also strongest for predictable images in the 'B' position, suggesting that when processing longer sequences, the brain may prioritise the data deemed most informative. Strikingly, greater N400 amplitudes during learning were associated with enhanced memory at test for individuals with low versus high individual alpha frequencies. In light of the relationship between the N400 and stimulus predictability, this finding may imply that predictive processing differs between individuals to influence the extent of memory encoding. Finally, exploratory analyses provided evidence for a later positivity that was predictive of subsequent memory performance. Ultimately, the results highlight the complex and interconnected relationship between predictive processing and memory, whilst shedding light on the accumulation of predictions across longer sequences.
Collapse
Affiliation(s)
- Sophie Jano
- Cognitive Neuroscience Laboratory, University of South Australia, St Bernards Road, Magill, SA 5072, Australia.
| | - Alex Chatburn
- Cognitive Neuroscience Laboratory, University of South Australia, St Bernards Road, Magill, SA 5072, Australia
| | - Zachariah R Cross
- Feinberg School of Medicine, Northwestern University, 420 E Superior St, Chicago, IL 60611, United States
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory, University of South Australia, St Bernards Road, Magill, SA 5072, Australia
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory, University of South Australia, St Bernards Road, Magill, SA 5072, Australia
| |
Collapse
|
2
|
Tarder-Stoll H, Baldassano C, Aly M. Consolidation Enhances Sequential Multistep Anticipation but Diminishes Access to Perceptual Features. Psychol Sci 2024; 35:1178-1199. [PMID: 39110746 PMCID: PMC11532645 DOI: 10.1177/09567976241256617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/19/2024] [Indexed: 08/10/2024] Open
Abstract
Many experiences unfold predictably over time. Memory for these temporal regularities enables anticipation of events multiple steps into the future. Because temporally predictable events repeat over days, weeks, and years, we must maintain-and potentially transform-memories of temporal structure to support adaptive behavior. We explored how individuals build durable models of temporal regularities to guide multistep anticipation. Healthy young adults (Experiment 1: N = 99, age range = 18-40 years; Experiment 2: N = 204, age range = 19-40 years) learned sequences of scene images that were predictable at the category level and contained incidental perceptual details. Individuals then anticipated upcoming scene categories multiple steps into the future, immediately and at a delay. Consolidation increased the efficiency of anticipation, particularly for events further in the future, but diminished access to perceptual features. Further, maintaining a link-based model of the sequence after consolidation improved anticipation accuracy. Consolidation may therefore promote efficient and durable models of temporal structure, thus facilitating anticipation of future events.
Collapse
Affiliation(s)
- Hannah Tarder-Stoll
- Department of Psychology, Columbia University
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Canada
| | | | - Mariam Aly
- Department of Psychology, Columbia University
| |
Collapse
|
3
|
Jano S, Cross ZR, Chatburn A, Schlesewsky M, Bornkessel-Schlesewsky I. Prior Context and Individual Alpha Frequency Influence Predictive Processing during Language Comprehension. J Cogn Neurosci 2024; 36:1898-1936. [PMID: 38820550 DOI: 10.1162/jocn_a_02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The extent to which the brain predicts upcoming information during language processing remains controversial. To shed light on this debate, the present study reanalyzed Nieuwland and colleagues' (2018) [Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., et al. Large-scale replication study reveals a limit on probabilistic prediction in language comprehension. eLife, 7, e33468, 2018] replication of DeLong and colleagues (2015) [DeLong, K. A., Urbach, T. P., & Kutas, M. Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8, 1117-1121, 2005]. Participants (n = 356) viewed sentences containing articles and nouns of varying predictability, while their EEG was recorded. We measured ERPs preceding the critical words (namely, the semantic prediction potential), in conjunction with postword N400 patterns and individual neural metrics. ERP activity was compared with two measures of word predictability: cloze probability and lexical surprisal. In contrast to prior literature, semantic prediction potential amplitudes did not increase as cloze probability increased, suggesting that the component may not reflect prediction during natural language processing. Initial N400 results at the article provided evidence against phonological prediction in language, in line with Nieuwland and colleagues' findings. Strikingly, however, when the surprisal of the prior words in the sentence was included in the analysis, increases in article surprisal were associated with increased N400 amplitudes, consistent with prediction accounts. This relationship between surprisal and N400 amplitude was not observed when the surprisal of the two prior words was low, suggesting that expectation violations at the article may be overlooked under highly predictable conditions. Individual alpha frequency also modulated the relationship between article surprisal and the N400, emphasizing the importance of individual neural factors for prediction. The present study extends upon existing neurocognitive models of language and prediction more generally, by illuminating the flexible and subject-specific nature of predictive processing.
Collapse
|
4
|
Lutz ND, Admard M, Genzoni E, Born J, Rauss K. Occipital sleep spindles predict sequence learning in a visuo-motor task. Sleep 2021; 44:zsab056. [PMID: 33743012 PMCID: PMC8361350 DOI: 10.1093/sleep/zsab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The brain appears to use internal models to successfully interact with its environment via active predictions of future events. Both internal models and the predictions derived from them are based on previous experience. However, it remains unclear how previously encoded information is maintained to support this function, especially in the visual domain. In the present study, we hypothesized that sleep consolidates newly encoded spatio-temporal regularities to improve predictions afterwards. METHODS We tested this hypothesis using a novel sequence-learning paradigm that aimed to dissociate perceptual from motor learning. We recorded behavioral performance and high-density electroencephalography (EEG) in male human participants during initial training and during testing two days later, following an experimental night of sleep (n = 16, including high-density EEG recordings) or wakefulness (n = 17). RESULTS Our results show sleep-dependent behavioral improvements correlated with sleep-spindle activity specifically over occipital cortices. Moreover, event-related potential (ERP) responses indicate a shift of attention away from predictable to unpredictable sequences after sleep, consistent with enhanced automaticity in the processing of predictable sequences. CONCLUSIONS These findings suggest a sleep-dependent improvement in the prediction of visual sequences, likely related to visual cortex reactivation during sleep spindles. Considering that controls in our experiments did not fully exclude oculomotor contributions, future studies will need to address the extent to which these effects depend on purely perceptual versus oculomotor sequence learning.
Collapse
Affiliation(s)
- Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience/IMPRS for Cognitive & Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marie Admard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Elsa Genzoni
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Sánchez-Mora J, Tamayo RM. From incidental learning to explicit memory: The role of sleep after exposure to a serial reaction time task. Acta Psychol (Amst) 2021; 217:103325. [PMID: 33984574 DOI: 10.1016/j.actpsy.2021.103325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
This laboratory study explores whether sleep has different effects on explicit (recognition-based) and implicit (priming-based) memory. Eighty-nine healthy participants were randomly assigned to one of two experimental conditions: sleep or wake. All participants were previously exposed to an incidental learning session involving a 12-element deterministic second-order conditional sequence embedded in a serial reaction time task. The participants' explicit and implicit knowledge was assessed both immediately after the learning session (pretest) and after 12 h (posttest). For the sleep group, participants had a night of normal sleep between pretest and posttest, whereas the wake group spent 12 h awake during the day. The measures involved an explicit recognition test and an implicit priming reaction-time test with old fragments from a previously learned sequence and new fragments of a different control sequence. The sleep group showed statistically significant improvement between the pretest and the posttest in the explicit memory measure, whereas the wake group did not. In the implicit task, both groups improved similarly after a 12-h retention interval. These results suggest that throughout sleep, implicitly acquired information is processed offline to yield an explicit representation of knowledge incidentally acquired the night before.
Collapse
Affiliation(s)
| | - Ricardo M Tamayo
- Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
6
|
Cross ZR, Kohler MJ, Schlesewsky M, Gaskell MG, Bornkessel-Schlesewsky I. Sleep-Dependent Memory Consolidation and Incremental Sentence Comprehension: Computational Dependencies during Language Learning as Revealed by Neuronal Oscillations. Front Hum Neurosci 2018; 12:18. [PMID: 29445333 PMCID: PMC5797781 DOI: 10.3389/fnhum.2018.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022] Open
Abstract
We hypothesize a beneficial influence of sleep on the consolidation of the combinatorial mechanisms underlying incremental sentence comprehension. These predictions are grounded in recent work examining the effect of sleep on the consolidation of linguistic information, which demonstrate that sleep-dependent neurophysiological activity consolidates the meaning of novel words and simple grammatical rules. However, the sleep-dependent consolidation of sentence-level combinatorics has not been studied to date. Here, we propose that dissociable aspects of sleep neurophysiology consolidate two different types of combinatory mechanisms in human language: sequence-based (order-sensitive) and dependency-based (order-insensitive) combinatorics. The distinction between the two types of combinatorics is motivated both by cross-linguistic considerations and the neurobiological underpinnings of human language. Unifying this perspective with principles of sleep-dependent memory consolidation, we posit that a function of sleep is to optimize the consolidation of sequence-based knowledge (the when) and the establishment of semantic schemas of unordered items (the what) that underpin cross-linguistic variations in sentence comprehension. This hypothesis builds on the proposal that sleep is involved in the construction of predictive codes, a unified principle of brain function that supports incremental sentence comprehension. Finally, we discuss neurophysiological measures (EEG/MEG) that could be used to test these claims, such as the quantification of neuronal oscillations, which reflect basic mechanisms of information processing in the brain.
Collapse
Affiliation(s)
- Zachariah R Cross
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Mark J Kohler
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia.,Sleep and Chronobiology Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Matthias Schlesewsky
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom
| | - Ina Bornkessel-Schlesewsky
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|