1
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
2
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
3
|
Namjoynik A, Islam MA, Islam M. Evaluating the efficacy of human dental pulp stem cells and scaffold combination for bone regeneration in animal models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:132. [PMID: 37189187 DOI: 10.1186/s13287-023-03357-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Human adult dental pulp stem cells (hDPSC) and stem cells from human exfoliated deciduous teeth (SHED) hold promise in bone regeneration for their easy accessibility, high proliferation rate, self-renewal and osteogenic differentiation capacity. Various organic and inorganic scaffold materials were pre-seeded with human dental pulp stem cells in animals, with promising outcomes in new bone formation. Nevertheless, the clinical trial for bone regeneration using dental pulp stem cells is still in its infancy. Thus, the aim of this systematic review and meta-analysis is to synthesise the evidence of the efficacy of human dental pulp stem cells and the scaffold combination for bone regeneration in animal bone defect models. METHODOLOGY This study was registered in PROSPERO (CRD2021274976), and PRISMA guideline was followed to include the relevant full-text papers using exclusion and inclusion criteria. Data were extracted for the systematic review. Quality assessment and the risk of bias were also carried out using the CAMARADES tool. Quantitative bone regeneration data of the experimental (scaffold + hDPSC/SHED) and the control (scaffold-only) groups were also extracted for meta-analysis. RESULTS Forty-nine papers were included for systematic review and only 27 of them were qualified for meta-analysis. 90% of the included papers were assessed as medium to low risk. In the meta-analysis, qualified studies were grouped by the unit of bone regeneration measurement. Overall, bone regeneration was significantly higher (p < 0.0001) in experimental group (scaffold + hDPSC/SHED) compared to the control group (scaffold-only) (SMD: 1.863, 95% CI 1.121-2.605). However, the effect is almost entirely driven by the % new bone formation group (SMD: 3.929, 95% CI 2.612-5.246) while % BV/TV (SMD: 2.693, 95% CI - 0.001-5.388) shows a marginal effect. Dogs and hydroxyapatite-containing scaffolds have the highest capacity in % new bone formation in response to human DPSC/SHED. The funnel plot exhibits no apparent asymmetry representing a lack of remarkable publication bias. Sensitivity analysis also indicated that the results generated in this meta-analysis are robust and reliable. CONCLUSION This is the first synthesised evidence showing that human DPSCs/SHED and scaffold combination enhanced bone regeneration highly significantly compared to the cell-free scaffold irrespective of scaffold type and animal species used. So, dental pulp stem cells could be a promising tool for treating various bone diseases, and more clinical trials need to be conducted to evaluate the effectiveness of dental pulp stem cell-based therapies.
Collapse
Affiliation(s)
- Amin Namjoynik
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK
| | - Md Asiful Islam
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad Islam
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK.
| |
Collapse
|
4
|
EzEldeen M, Moroni L, Nejad ZM, Jacobs R, Mota C. Biofabrication of engineered dento-alveolar tissue. BIOMATERIALS ADVANCES 2023; 148:213371. [PMID: 36931083 DOI: 10.1016/j.bioadv.2023.213371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Oral health is essential for a good overall health. Dento-alveolar conditions have a high prevalence, ranging from tooth decay periodontitis to alveolar bone resorption. However, oral tissues exhibit a limited regenerative capacity, and full recovery is challenging. Therefore, regenerative therapies for dento-alveolar tissue (e.g., alveolar bone, periodontal membrane, dentin-pulp complex) have gained much attention, and novel approaches have been proposed in recent decades. This review focuses on the cells, biomaterials and the biofabrication methods used to develop therapies for tooth root bioengineering. Examples of the techniques covered are the multitude of additive manufacturing techniques and bioprinting approaches used to create scaffolds or tissue constructs. Furthermore, biomaterials and stem cells utilized during biofabrication will also be described for different target tissues. As these new therapies gradually become a reality in the lab, the translation to the clinic is still minute, with a further need to overcome multiple challenges and broaden the clinical application of these alternatives.
Collapse
Affiliation(s)
- Mostafa EzEldeen
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Lorenzo Moroni
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands
| | - Zohre Mousavi Nejad
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Biomaterials Research Group, Department of Nanotechnology and Advance Materials, Materials and Energy Research Center, P.O. Box: 31787-316, Karaj, Alborz, Iran
| | - Reinhilde Jacobs
- OMFS IMPATH Research Group, Faculty of Medicine, Department of Imaging and Pathology, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlos Mota
- Institute for Technology-inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Tissue Engineering Supporting Regenerative Strategies to Enhance Clinical Orthodontics and Dentofacial Orthopaedics: A Scoping, Perspective Review. Biomedicines 2023; 11:biomedicines11030795. [PMID: 36979774 PMCID: PMC10045353 DOI: 10.3390/biomedicines11030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The personalized regenerative therapeutic strategies applicable in the structural and functional repair of maxillofacial/dental defects are expected to extend beyond the limits of what is currently possible in the management of dentofacial anomalies and treating malocclusions. The application of undifferentiated stem cells (SCs), including signaling molecule control and individualized tissue engineering based on targeted therapies, has been proposed to overcome therapeutic limitations and complications associated with treatments for craniofacial defects, including severe orthodontic discrepancies. This scoping, prospective review discusses comprehensively the current knowledge and prospects for improving clinical outcomes by the application of novel cell-required and cell-free regenerative strategies in biomedicine. The existing evidence, although scant, suggests that patients receiving an orthodontic treatment could benefit from precise tissue augmentation, allowing enhancement of tooth movement generated by orthognathic forces; faster, more predictable alignment of dental arches; optimal management of periodontal complications; and prevention of external root resorption. Ultimately, enriching orofacial tissues and “customizing” the repair of congenital/acquired defects in the craniofacial region can be vastly enhanced to provide a positive therapeutic outcome and improve patients’ quality of life.
Collapse
|
6
|
Cultivation of Cryopreserved Human Dental Pulp Stem Cells—A New Approach to Maintaining Dental Pulp Tissue. Int J Mol Sci 2022; 23:ijms231911485. [PMID: 36232787 PMCID: PMC9570360 DOI: 10.3390/ijms231911485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are multipotent mesenchymal stem cells (MSCs) that are capable of self-renewal with multilineage differentiation potential. After being cryopreserved, hDPSCs were reported to maintain a high level of proliferation and multi-differentiation abilities. In order to optimize cryopreservation techniques, decrease storage requirements and lower contamination risks, the feasibility of new whole-tooth cryopreservation and its effects on hDPSCs were tested. The survival rates, morphology, proliferation rates, cell activity, surface antigens and differentiation abilities of hDPSCs isolated from fresh teeth were compared with those of one-month cryopreserved teeth in 5% and 10% DMSO. The data of the present study indicated that the new cryopreservation approach did not reduce the capabilities or stemness of hDPSCs, with the exception that it extended the first appearance time of hDPSCs in the teeth that were cryopreserved in 10% DMSO, and reduced their recovery rate. With the novel strategy of freezing, the hDPSCs still expressed the typical surface markers of MSCs and maintained excellent proliferation capacity. Three consecutive weeks of osteogenic and adipogenic induction also showed that the expression of the key genes in hDPSCs, including lipoprotein lipase (LPL), peroxisome proliferator-activated receptor-γ (PPAR-γ), alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), type I collagen (COL I) and osteocalcin (OSC) was not affected, indicating that their differentiation abilities remained intact, which are crucial parameters for hDPSCs as cell-therapy candidates. These results demonstrated that the new cryopreservation method is low-cost and effective for the good preservation of hDPSCs without compromising cell performance, and can provide ideas and evidence for the future application of stem-cell therapies and the establishment of dental banks.
Collapse
|
7
|
Vu HT, Han MR, Lee JH, Kim JS, Shin JS, Yoon JY, Park JH, Dashnyam K, Knowles JC, Lee HH, Kim JB, Lee JH. Investigating the Effects of Conditioned Media from Stem Cells of Human Exfoliated Deciduous Teeth on Dental Pulp Stem Cells. Biomedicines 2022; 10:biomedicines10040906. [PMID: 35453661 PMCID: PMC9027398 DOI: 10.3390/biomedicines10040906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pulp regeneration has recently attracted interest in modern dentistry. However, the success ratio of pulp regeneration is low due to the compromising potential of stem cells, such as their survival, migration, and odontoblastic differentiation. Stem cells from human exfoliated deciduous teeth (SHED) have been considered a promising tool for regenerative therapy due to their ability to secrete multiple factors that are essential for tissue regeneration, which is achieved by minimally invasive procedures with fewer ethical or legal concerns than those of other procedures. The aim of this study is to investigate the potency of SHED-derived conditioned media (SHED CM) on dental pulp stem cells (DPSCs), a major type of mesenchymal stem cells for dental pulp regeneration. Our results show the promotive efficiency of SHED CM on the proliferation, survival rate, and migration of DPSCs in a dose-dependent manner. Upregulation of odontoblast/osteogenic-related marker genes, such as ALP, DSPP, DMP1, OCN, and RUNX2, and enhanced mineral deposition of impaired DPSCs are also observed in the presence of SHED CM. The analysis of SHED CM found that a variety of cytokines and growth factors have positive effects on cell proliferation, migration, anti-apoptosis, and odontoblast/osteogenic differentiation. These findings suggest that SHED CM could provide some benefits to DPSCs in pulp regeneration.
Collapse
Affiliation(s)
- Huong Thu Vu
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
| | - Mi-Ran Han
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jun-Haeng Lee
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Jong-Soo Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
| | - Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
| | - Jonathan Campbell Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Centre, Cheonan 31116, Korea
- Cell & Matter Institue, Dankook University, Cheonan 31116, Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College, London WC1E 6BT, UK
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (H.T.V.); (M.-R.H.); (J.-H.L.); (J.-S.K.); (J.-S.S.)
- Correspondence: (J.-B.K.); (J.-H.L.); Tel.: +82-41-550-3081 (J.-B.K. & J.-H.L.); Fax: +82-41-559-7839 (J.-B.K. & J.-H.L.)
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Korea; (J.-Y.Y.); (J.-H.P.); (K.D.); (J.C.K.); (H.-H.L.)
- Department of Biomaterials science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Centre, Cheonan 31116, Korea
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College, London WC1E 6BT, UK
- Drug Research Institute, Mongolian Pharmaceutical University & Monos Group, Ulaanbaatar 14250, Mongolia
- Correspondence: (J.-B.K.); (J.-H.L.); Tel.: +82-41-550-3081 (J.-B.K. & J.-H.L.); Fax: +82-41-559-7839 (J.-B.K. & J.-H.L.)
| |
Collapse
|
8
|
Towards Induction of Angiogenesis in Dental Pulp Stem Cells Using Chitosan-Based Hydrogels Releasing Basic Fibroblast Growth Factor. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5401461. [PMID: 35198635 PMCID: PMC8860569 DOI: 10.1155/2022/5401461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Introduction. Chitosan is a natural biopolymer that attracted enormous attention in biomedical fields. The main components of regenerative endodontic procedures (REPs), as well as tissue engineering, are scaffolds, stem cells, and growth factors. As one of the basic factors in the REPs is maintaining vascularization, this study was aimed at developing basic fibroblast growth factor- (bFGF-) loaded scaffolds and investigating their effects on the angiogenic induction in human dental pulp stem cells (hDPSCs). Methods. Poly (ε-caprolactone) (PCL)/chitosan- (CS-) based highly porous scaffold (PCL/CS) was prepared and evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. The adhesion and survival potency of seeded cells were assessed by SEM and MTT assays, respectively. The amount of angiogenic markers was investigated in gene and protein levels by real-time PCR and western blotting assays, respectively. Results. Based on our findings, the SEM and FTIR tests confirmed the appropriate structure of synthesized scaffolds. Besides, the adhesion and survival rate of cells and the levels of VEGFR-2, Tie2, and Angiopoietin-1 genes were increased significantly in the PCL/CS/bFGF group. Also, the western blotting results showed the upregulation of these markers at protein levels, which were considerably higher at the PCL/CS/bFGF group (
). Conclusions. On a more general note, this study demonstrates that the bFGF-loaded PCL/CS scaffolds have the potential to promote angiogenesis of hDPSCs, which could provide vitality of dentin-pulp complex as the initial required factor for regenerative endodontic procedures.
Collapse
|
9
|
Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int J Mol Sci 2022; 23:ijms23031662. [PMID: 35163584 PMCID: PMC8836082 DOI: 10.3390/ijms23031662] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).
Collapse
|
10
|
Dental Pulp Stem Cell Heterogeneity: Finding Superior Quality "Needles" in a Dental Pulpal "Haystack" for Regenerative Medicine-Based Applications. Stem Cells Int 2022; 2022:9127074. [PMID: 35027930 PMCID: PMC8752304 DOI: 10.1155/2022/9127074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Human dental pulp stem/stromal cells (hDPSCs) derived from the permanent secondary dentition are recognised to possess certain advantageous traits, which support their potential use as a viable source of mesenchymal stem/stromal cells (MSCs) for regenerative medicine-based applications. However, the well-established heterogeneous nature of hDPSC subpopulations, coupled with their limited numbers within dental pulp tissues, has impeded our understanding of hDPSC biology and the translation of sufficient quantities of these cells from laboratory research, through successful therapy development and clinical applications. This article reviews our current understanding of hDPSC biology and the evidence underpinning the molecular basis of their heterogeneity, which may be exploited to distinguish individual subpopulations with specific or superior characteristics for regenerative medicine applications. Pertinent unanswered questions which still remain, regarding the developmental origins, hierarchical organisation, and stem cell niche locations of hDPSC subpopulations and their roles in hDPSC heterogeneity and functions, will further be explored. Ultimately, a greater understanding of how key features, such as specific cell surface, senescence and other relevant genes, and protein and metabolic markers, delineate between hDPSC subpopulations with contrasting stemness, proliferative, multipotency, immunomodulatory, anti-inflammatory, and other relevant properties is required. Such knowledge advancements will undoubtedly lead to the development of novel screening, isolation, and purification strategies, permitting the routine and effective identification, enrichment, and expansion of more desirable hDPSC subpopulations for regenerative medicine-based applications. Furthermore, such innovative measures could lead to improved cell expansion, manufacture, and banking procedures, thereby supporting the translational development of hDPSC-based therapies in the future.
Collapse
|
11
|
Khaseb S, Orooji M, Pour MG, Safavi SM, Eghbal MJ, Rezai Rad M. Dental stem cell banking: Techniques and protocols. Cell Biol Int 2021; 45:1851-1865. [PMID: 33979004 DOI: 10.1002/cbin.11626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Dental tissue-derived stem cells (DSCs) provide an easy, accessible, relatively noninvasive promising source of adult stem cells (ASCs), which brought encouraging prospective for their clinical applications. DSCs provide a perfect opportunity to apply for a patient's own ASC, which poses a low risk of immune rejection. However, problems associated with the long-term culture of stem cells, including loss of proliferation and differentiation capacities, senescence, genetic instability, and the possibility of microbial contamination, make cell banking necessary. With the rapid development of advanced cryopreservation technology, various international DSC banks have been established for both research and clinical applications around the world. However, few studies have been published that provide step-by-step guidance on DSCs isolation and banking methods. The purpose of this review is to present protocols and technical details for all steps of cryopreserved DSCs, from donor selection, isolation, cryopreservation, to characterization and quality control. Here, the emphasis is on presenting practical principles in accordance with the available valid guidelines.
Collapse
Affiliation(s)
- Sanaz Khaseb
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mahdi Orooji
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Ghasemian Pour
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammadreza Safavi
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Eghbal
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Paes SM, Pupo YM, Cavenago BC, Fonseca-Silva T, Santos CCDO. Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review. Restor Dent Endod 2021; 46:e26. [PMID: 34123762 PMCID: PMC8170376 DOI: 10.5395/rde.2021.46.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.
Collapse
Affiliation(s)
- Sabrina Moreira Paes
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | - Yasmine Mendes Pupo
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | | | - Thiago Fonseca-Silva
- Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| | - Carolina Carvalho de Oliveira Santos
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil.,Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| |
Collapse
|
13
|
Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, Bauer R, de Magalhães JP. Winter is coming: the future of cryopreservation. BMC Biol 2021; 19:56. [PMID: 33761937 PMCID: PMC7989039 DOI: 10.1186/s12915-021-00976-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field.
Collapse
Affiliation(s)
- Sanja Bojic
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Alex Murray
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Barry L Bentley
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, UK.,Magdalene College, University of Cambridge, Cambridge, UK
| | | | - Piotr Pawlik
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | | | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
14
|
Chlorite oxidized oxyamylose differentially influences the microstructure of fibrin and self assembling peptide hydrogels as well as dental pulp stem cell behavior. Sci Rep 2021; 11:5687. [PMID: 33707502 PMCID: PMC7952722 DOI: 10.1038/s41598-021-84405-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Tailored hydrogels mimicking the native extracellular environment could help overcome the high variability in outcomes within regenerative endodontics. This study aimed to evaluate the effect of the chemokine-binding and antimicrobial polymer, chlorite-oxidized oxyamylose (COAM), on the microstructural properties of fibrin and self-assembling peptide (SAP) hydrogels. A further goal was to assess the influence of the microstructural differences between the hydrogels on the in vitro behavior of human dental pulp stem cells (hDPSCs). Structural and mechanical characterization of the hydrogels with and without COAM was performed by atomic force microscopy and scanning electron microscopy to characterize their microstructure (roughness and fiber length, diameter, straightness, and alignment) and by nanoindentation to measure their stiffness (elastic modulus). Then, hDPSCs were encapsulated in hydrogels with and without COAM. Cell viability and circularity were determined using confocal microscopy, and proliferation was determined using DNA quantification. Inclusion of COAM did not alter the microstructure of the fibrin hydrogels at the fiber level while affecting the SAP hydrogel microstructure (homogeneity), leading to fiber aggregation. The stiffness of the SAP hydrogels was sevenfold higher than the fibrin hydrogels. The viability and attachment of hDPSCs were significantly higher in fibrin hydrogels than in SAP hydrogels. The DNA content was significantly affected by the hydrogel type and the presence of COAM. The microstructural stability after COAM inclusion and the favorable hDPSCs' response observed in fibrin hydrogels suggest this system as a promising carrier for COAM and application in endodontic regeneration.
Collapse
|
15
|
Regeneration of pulp-dentin complex using human stem cells of the apical papilla: in vivo interaction with two bioactive materials. Clin Oral Investig 2021; 25:5317-5329. [PMID: 33630165 DOI: 10.1007/s00784-021-03840-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To compare the regenerative properties of human stem cells of the apical papilla (SCAPs) embedded in a platelet-rich plasma (PRP) scaffold, when implanted in vivo using an organotypic model composed of human root segments, with or without the presence of the bioactive cements - ProRoot MTA or Biodentine. MATERIAL AND METHODS SCAPs were isolated from third molars with incomplete rhizogenesis and expanded and characterized in vitro using stem cell and surface markers. The pluripotency of these cells was also assessed using adipogenic, chondrogenic, and osteogenic differentiation protocols. SCAPs together with a scaffold of PRP were added to the root segment lumen and the organotypic model implanted on the dorsal region of immunodeficient rats for a period of 4 months. RESULTS Presence of SCAPs induced de novo formation of dentin-like and pulp-like tissue. A barrier of either ProRoot MTA or Biodentine did not significantly affect the fraction of sections from roots segments observed to contain deposition of hard material (P > 0.05). However, the area of newly deposited dentin was significantly greater in segments containing a barrier of Biodentine compared with ProRoot MTA (P < 0.001). CONCLUSIONS AND CLINICAL RELEVANCE SCAPs offer a viable alternative to other dental stem cells (DSCs) in their regenerative properties when enclosed in the microenvironment of human tooth roots. The present study also suggests that the presence of bioactive materials does not hinder or impede the formation of new hard tissues, but the presence of Biodentine may promote greater mineralized tissue deposition.
Collapse
|
16
|
Cryopreservation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Alraies A, Canetta E, Waddington RJ, Moseley R, Sloan AJ. Discrimination of Dental Pulp Stem Cell Regenerative Heterogeneity by Single-Cell Raman Spectroscopy. Tissue Eng Part C Methods 2020; 25:489-499. [PMID: 31337281 DOI: 10.1089/ten.tec.2019.0129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IMPACT STATEMENT This study is the first to investigate and confirm the effectiveness of single-cell Raman spectroscopy (SCRM), in its ability to discriminate between dental pulp stem cells (DPSCs) with contrasting proliferative and differentiation capabilities. The findings show that SCRM can rapidly and noninvasively distinguish and identify DPSC subpopulations in vitro with superior proliferative and multipotency properties, versus lesser quality DPSCs, thereby overcoming the significant heterogeneity issues surrounding DPSC ex vivo expansion and differentiation capabilities. Such findings support further SCRM assessment for the selective screening/isolation of superior quality DPSCs from whole dental pulp tissues, for more effective in vitro evaluation and therapy development.
Collapse
Affiliation(s)
- Amr Alraies
- 1Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Elisabetta Canetta
- 2Faculty of Sports, Health and Applied Science, St. Mary's University, London, United Kingdom
| | - Rachel J Waddington
- 1Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryan Moseley
- 1Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Alastair J Sloan
- 1Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
18
|
Al-Hakami A, Alqhatani SQ, Shaik S, Jalfan SM, Dhammam MSA, Asiri W, Alkahtani AM, Devaraj A, Chandramoorthy HC. Cytokine physiognomies of MSCs from varied sources confirm the regenerative commitment post-coculture with activated neutrophils. J Cell Physiol 2020; 235:8691-8701. [PMID: 32385929 DOI: 10.1002/jcp.29713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
The interaction of mesenchymal stromal cells (MSCs) with paracrine signals and immunological cells, and their responses and regenerative commitment thereafter, is understudied. In the current investigation, we compared MSCs from the umbilical cord blood (UCB), dental pulp (DP), and liposuction material (LS) on their ability to respond to activated neutrophils. Cytokine profiling (interleukin-1α [IL-1α], IL-2, IL-4, IL-6, IL-8, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], transforming growth factor-β [TGF-β]), cellular proliferation and osteogenic differentiation patterns were assessed. The results showed largely comparable cytokine profiles with higher TNF-α and IFN-γ levels in LSMSCs owing to their mature cellular phenotype. The viability and proliferation between LS/DP/UCB MSCs were comparable in the coculture group, while direct activation of MSCs with lipopolysaccharide (LPS) showed comparable proliferation with significant cell death in UCB MSCs and slightly higher cell death in the other two types of MSC. Furthermore, when MSCs post-neutrophil exposure were induced for osteogenic differentiation, though all the MSCs devoid of the sources differentiated, we observed rapid and significant turnover of DPMSCs positive of osteogenic markers rather than LS and UCB MSCs. We further observed a significant turnover of IL-1α and TGF-β at mRNA and cytokine levels, indicating the commitment of MSCs to differentiate through interacting with immunological cells or bacterial products like neutrophils or LPS, respectively. Taken together, these results suggest that MSCs have more or less similar cytokine responses devoid of their anatomical niche. They readily switch over from the cytokine responsive cell phenotype at the immunological microenvironment to differentiate and regenerate tissue in response to cellular signals.
Collapse
Affiliation(s)
- Ahmed Al-Hakami
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saad Qaddah Alqhatani
- Department of Surgery, Plastic Surgery Division, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Sharaz Shaik
- Department of Prosthetic Dentistry, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Saaed Mohammed Jalfan
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Wejdan Asiri
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Misfer Alkahtani
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Anantharam Devaraj
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
19
|
Chaikovsky Y, Herashchenko S, Deltsova O. Problems and Perspectives of Using Stem Cells of Cartilage Tissues. PROBLEMS OF CRYOBIOLOGY AND CRYOMEDICINE 2019; 29:303-316. [DOI: 10.15407/cryo29.04.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Botelho J, Cavacas MA, Machado V, Mendes JJ. Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med 2017. [PMID: 28649865 DOI: 10.1080/07853890.2017.1347705] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Since the disclosure of adult mesenchymal stem cells (MSCs), there have been an intense investigation on the characteristics of these cells and their potentialities. Dental stem cells (DSCs) are MSC-like populations with self-renewal capacity and multidifferentiation potential. Currently, there are five main DSCs, dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), periodontal ligament stem cells (PDLSCs) and dental follicle precursor cells (DFPCs). These cells are extremely accessible, prevail during all life and own an amazing multipotency. In the past decade, DPSCs and SHED have been thoroughly studied in regenerative medicine and tissue engineering as autologous stem cells therapies and have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and auto-immune conditions, in both animal and human models, and most recently some of them in human clinical trials. In this review, we focus the characteristics, the multiple roles of DSCs and its potential translation to clinical settings. These new insights of the apparently regenerative aptitude of these DSCs seems quite promising to investigate these cells abilities in a wide variety of pathologies. Key messages Dental stem cells (DSCs) have a remarkable self-renewal capacity and multidifferentiation potential; DSCs are extremely accessible and prevail during all life; DSCs, as stem cells therapies, have shown amazing therapeutic abilities in oro-facial, neurologic, corneal, cardiovascular, hepatic, diabetic, renal, muscular dystrophy and autoimmune conditions; DSCs are becoming extremely relevant in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- João Botelho
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | | | - Vanessa Machado
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| | - José João Mendes
- a Egas Moniz Cooperativa de Ensino Superior CRL , Caparica , Portugal
| |
Collapse
|
21
|
Ko DW, Yoon JK, Ahn JI, Lee M, Yang WS, Ahn JY, Lim JM. The importance of post-thaw subculture for standardizing cellular activity of fresh or cryopreserved mouse embryonic stem cells. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:335-343. [PMID: 28823125 PMCID: PMC5838338 DOI: 10.5713/ajas.17.0294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022]
Abstract
Objective Remarkable difference in cellular activity was found between early and late subpassaged embryonic stem cell (ESCs) lines, which can be created by subtle changes in cell manipulation protocol. This study subsequently examined whether post-thaw subculture of early subpassaged ESC lines could further affect the activity of the ESCs. Methods Fresh (as a control treatment) or cryopreserved F1 hybrid (B6CBAF1) early ESC lines (C57BL/6xCBA) of the 4 (P4) or the 19 passage (P19) were subcultured once, twice or six times under the same condition. The post-thaw survival of the ESCs was monitored after the post-treatment subculture and the ability of cell proliferation, reactive oxygen species (ROS) generation, apoptosis and mitochondrial ATP synthesis was subsequently examined. Results Regardless of the subculture number, P19 ESCs showed better (p<0.05) doubling time and less ATP production than P4 ESCs and such difference was not influenced by fresh or cryopreservation. The difference between P4 and P19 ESC lines became decreased as the post-treatment subculture was increased and the six times subculture eliminated such difference. Similarly, transient but prominent difference in ROS production and apoptotic cell number was detected between P4 and P19 ESCs only at the 1st subculture after treatment, but no statistical differences between two ESC lines was detected in other observations. Conclusion The results of this study suggest that post-thaw subculture of ESCs under the same environment is recommended for standardizing their cellular activity. The activity of cell proliferation ability and ATP synthesis can be used as parameters for quality control of ESCs.
Collapse
Affiliation(s)
- Dong Woo Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jung Ki Yoon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong Il Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Myungook Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Woo Sub Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.,Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,GreenBio Research Institute, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|