1
|
Chang CY, Cheng IC, Chang YC, Tsai PS, Lai SY, Huang YL, Jeng CR, Pang VF, Chang HW. Identification of Neutralizing Monoclonal Antibodies Targeting Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus Spike Protein. Sci Rep 2019; 9:2529. [PMID: 30792462 PMCID: PMC6385244 DOI: 10.1038/s41598-019-39844-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 01/20/2023] Open
Abstract
Since 2010, newly identified variants of porcine epidemic diarrhoea virus (PEDV) have caused high mortality in neonatal piglets which has devastated the swine industry. The spike (S) glycoprotein of PEDV contains multiple neutralizing epitopes and is a major target for PEDV neutralization and vaccine development. To understand the antigenicity of the new PEDV variant, we characterized the neutralizing epitopes of a new genotype 2b PEDV isolate from Taiwan, PEDV Pintung 52 (PEDV-PT), by the generation of neutralizing monoclonal antibodies (NmAbs). Two NmAbs, P4B-1, and E10E-1–10 that recognized the ectodomain of the full-length recombinant PEDV S protein and exhibited neutralizing ability against the PEDV-PT virus were selected. Recombinant truncated S proteins were used to identify the target sequences for the NmAbs and P4B-1 was shown to recognize the C-terminus of CO-26K equivalent epitope (COE) at amino acids (a.a.) 575–639 of the PEDV S. Interestingly, E10E-1–10 could recognize a novel neutralizing epitope at a.a. 435–485 within the S1A domain of the PEDV S protein, whose importance and function are yet to be determined. Moreover, both NmAbs could not bind to linearized S proteins, indicating that only conformational epitopes are recognized. This data could improve our understanding of the antigenic structures of the PEDV S protein and facilitate future development of novel epitope-based vaccines.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Shiue Tsai
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Seiu-Yu Lai
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City, 251, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan. .,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Jin YB, Yang WT, Shi CW, Feng B, Huang KY, Zhao GX, Li QY, Xie J, Huang HB, Jiang YL, Wang JZ, Wang G, Kang YH, Yang GL, Wang CF. Immune responses induced by recombinant Lactobacillus plantarum expressing the spike protein derived from transmissible gastroenteritis virus in piglets. Appl Microbiol Biotechnol 2018; 102:8403-8417. [PMID: 30022263 PMCID: PMC7080080 DOI: 10.1007/s00253-018-9205-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 01/07/2023]
Abstract
Transmissible gastroenteritis coronavirus (TGEV) is one of the most severe threats to the swine industry. In this study, we constructed a suite of recombinant Lactobacillus plantarum with surface displaying the spike (S) protein coming from TGEV and fused with DC cells targeting peptides (DCpep) to develop an effective, safe, and convenient vaccine against transmissible gastroenteritis. Our research results found that the recombinant Lactobacillus plantarum (NC8-pSIP409-pgsA-S-DCpep) group expressing S fused with DCpep could not only significantly increase the percentages of MHC-II+CD80+ B cells and CD3+CD4+ T cells but also the number of IgA+ B cells and CD3+CD4+ T cells of ileum lamina propria, which elevated the specific secretory immunoglobulin A (SIgA) titers in feces and IgG titers in serum. Taken together, these results suggest that NC8-pSIP409-pgsA-S-DCpep expressing the S of TGEV fused with DCpep could effectively induce immune responses and provide a feasible original strategy and approach for the design of TGEV vaccines.
Collapse
Affiliation(s)
- Yu-Bei Jin
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Bo Feng
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Ke-Yan Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guang-Xun Zhao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Qiong-Yan Li
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jing Xie
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Guan Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|