1
|
Zimmerman EH, Ramsey EL, Hunter KE, Villadelgado SM, Phillips CM, Shipman RT, Forsyth MH. The Helicobacter pylori methylome is acid-responsive due to regulation by the two-component system ArsRS and the type I DNA methyltransferase HsdM1 (HP0463). J Bacteriol 2024; 206:e0030923. [PMID: 38179929 PMCID: PMC10810217 DOI: 10.1128/jb.00309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
In addition to its role in genome protection, DNA methylation can regulate gene expression. In this study, we characterized the impact of acidity, phase variation, and the ArsRS TCS on the expression of the Type I m6A DNA methyltransferase HsdM1 (HP0463) of Helicobacter pylori 26695 and their subsequent effects on the methylome. Transcription of hsdM1 increases at least fourfold in the absence of the sensory histidine kinase ArsS, the major acid-sensing protein of H. pylori. hsdM1 exists in the phase-variable operon hsdR1-hsdM1. Phase-locking hsdR1 (HP0464), the restriction endonuclease gene, has significant impacts on the transcription of hsdM1. To determine the impacts of methyltransferase transcription patterns on the methylome, we conducted methylome sequencing on samples cultured at pH 7 or pH 5. We found differentially methylated motifs between these growth conditions and that deletions of arsS and/or hsdM1 interfere with the epigenetic acid response. Deletion of arsS leads to altered activity of HsdM1 and multiple other methyltransferases under both pH conditions indicating that the ArsRS TCS, in addition to direct effects on regulon transcription during acid acclimation, may also indirectly impact gene expression via regulation of the methylome. We determined the target motif of HsdM1 (HP0463) to be the complementary bipartite sequence pair 5'-TCAm6AVN6TGY-3' and 3'-AGTN6GAm6ACA-5'. This complex regulation of DNA methyltransferases, and thus differential methylation patterns, may have implications for the decades-long persistent infection by H. pylori. IMPORTANCE This study expands the possibilities for complex, epigenomic regulation in Helicobacter pylori. We demonstrate that the H. pylori methylome is plastic and acid sensitive via the two-component system ArsRS and the DNA methyltransferase HsdM1. The control of a methyltransferase by ArsRS may allow for a layered response to changing acidity. Likely, an early response whereby ArsR~P affects regulon expression, including the methyltransferase hsdM1. Then, a somewhat later effect as the altered methylome, due to altered HsdM1 expression, subsequently alters the expression of other genes involved in acclimation. The intermediate methylation of certain motifs supports the hypothesis that methyltransferases play a regulatory role. Untangling this additional web of regulation could play a key role in understanding H. pylori colonization and persistence.
Collapse
Affiliation(s)
| | - Erin L. Ramsey
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | | | | | - Ryan T. Shipman
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Mark H. Forsyth
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
2
|
Zhou M, Zeng Y, Xi Y, Luo S, Qi J, Zhao G, Sun Y, Guo Y, Cheng F. School-based Hygiene Intervention to Prevent HelicObacter Pylori infection among childrEn (SHIP HOPE): protocol for a cluster-randomised controlled trial. BMJ Open 2022; 12:e064207. [PMID: 36600426 PMCID: PMC9772681 DOI: 10.1136/bmjopen-2022-064207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Helicobacter pylori infection rates are high in China and worldwide, and maintaining good hygiene is effective in preventing H. pylori infection. Childhood is a critical stage for developing good hygiene practices. Therefore, in this study, we aimed to explore whether a comprehensive hygiene intervention can prevent H. pylori infection in primary schools in China. METHODS AND ANALYSIS The School-based Hygiene Intervention to Prevent HelicObacter Pylori infection among childrEn study is a cluster-randomised controlled trial, which will include approximately 2400 children in grades 2-4 from 60 classes in 10 primary schools of Linqu County, Shandong Province. Schools will be randomly assigned (1:1) via a computer-generated list, to receive either comprehensive hygiene intervention (intervention) or the usual health education lessons (control), with stratification by area (urban or rural). The interventions will include the following: (1) Children's education: lessons and cartoon books designed to provide basic knowledge about hygiene, H. pylori, hand hygiene, diet and oral hygiene will be provided to children; (2) Caregiver's education: children will be empowered to share hygiene-related knowledge with their caregivers as homework; caregivers will be also invited to the school for hygiene lessons; (3) School hygiene promotion: suggestions will be provided for improving the hygienic environment. Children in control schools will receive usual health education lessons according to the arrangements of each school. The primary outcome is the prevalence and incidence of H. pylori infection among children at 1-year follow-up. The secondary outcomes are H. pylori and hygiene knowledge, family eating customs and hygiene practices among children and their caregivers, as well as school absences owing to diarrhoea. Additionally, growth in children is set as an exploratory outcome. General linear mixed models will be used to analyse differences between the intervention and control schools. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Institution Review Board of Tsinghua University (No: 20220020). Written informed consent will be obtained from each child and one of their caregivers. The findings of this study will be actively disseminated through scientific publications and conference presentations. TRIAL REGISTRATION NUMBER ChiCTR2200056191.
Collapse
Affiliation(s)
- Mengge Zhou
- Vanke School of Public Health, Tsinghua University, Beijing, People's Republic of China
- Institute for Healthy China, Tsinghua University, Beijing, People's Republic of China
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | - Yuhong Zeng
- Department of Epidemiology, College of Preventive Medicine, Army Medical University, Chongqing, People's Republic of China
| | - Yu'e Xi
- Vanke School of Public Health, Tsinghua University, Beijing, People's Republic of China
- Institute for Healthy China, Tsinghua University, Beijing, People's Republic of China
| | - Sitong Luo
- Vanke School of Public Health, Tsinghua University, Beijing, People's Republic of China
- Institute for Healthy China, Tsinghua University, Beijing, People's Republic of China
| | - Jing Qi
- School of Management, Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Guanqi Zhao
- Center for Coronary Artery Disease, Capital Medical University Affiliated Anzhen Hospital, Beijing, People's Republic of China
| | - Yamei Sun
- Department of Gastroenterology, Capital Medical University Affiliated Anzhen Hospital, Beijing, People's Republic of China
| | - Yang Guo
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, People's Republic of China
| | - Feng Cheng
- Vanke School of Public Health, Tsinghua University, Beijing, People's Republic of China
- Institute for Healthy China, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Arismendi Sosa AC, Mariani ML, Vega AE, Penissi AB. Extra virgin olive oil inhibits Helicobacter pylori growth in vitro and the development of mice gastric mucosa lesions in vivo. Front Microbiol 2022; 13:961597. [PMID: 35992644 PMCID: PMC9389160 DOI: 10.3389/fmicb.2022.961597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
Helicobacter pylori infection is widespread worldwide, with more than a half of the world population infected. H. pylori antibiotic-resistant strains and non-compliance to therapy are the major causes of H. pylori eradication failure. The search for new therapies based on plant extracts is a scientific interest field. The present study was conducted to evaluate the effect in vitro of extra virgin olive oil (EVOO), hydroxytyrosol (HT), and oleuropein (Olp) against two H. pylori strains and the effect in vivo of the oral administration of EVOO on the gastric mucosa of BALB/c mice infected with this microorganism. The broth microdilution method assayed the antibacterial in vitro activity of EVOO, HT, and Olp against H. pylori strains. For in vivo studies, male BALB/c mice were infected orally with an H. pylori suspension every 72 h. Four groups were used: (1) Control, (2) H. pylori-infected (HP), (3) EVOO, and (4) HP + EVOO. Mice were sacrificed at 7, 15, and 30 days. The stomachs were removed and observed under a microscope. Scoring of the degree of erosion was determined. Samples were processed by histological techniques for light microscopy. Macroscopic analysis showed that the presence of small erosions increased, both in number and size, in the infected group. Animals infected and treated with EVOO exhibited the presence of fewer erosions, which decreased in number as the treatment progressed. The mucosa of the control and EVOO groups showed normal histological characteristics at the three times studied. The mucosa of animals infected with H. pylori showed disruptions of the lining epithelium, damage to gastric glands, and vasodilation. The mucosa of animals infected with H. pylori and treated with EVOO showed morphological characteristics similar to those of normal and EVOO mucosa. For the first time, the current study showed the effect in vitro and in vivo of EVOO and combined administration of HT and Olp against H. pylori using an animal model. Future studies are needed to establish the mechanism of EVOO’s action at the gastric mucosa level to propose this product as a natural antimicrobial agent for the treatment of gastric H. pylori infections.
Collapse
Affiliation(s)
- Andrea Celeste Arismendi Sosa
- Área de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - María Laura Mariani
- Instituto de Histología y Embriología “Dr. Mario H. Burgos” (IHEM-CCT Mendoza-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alba Edith Vega
- Área de Microbiología e Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología “Dr. Mario H. Burgos” (IHEM-CCT Mendoza-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Alicia Beatriz Penissi,
| |
Collapse
|
4
|
Network Pharmacology and Molecular Docking Analysis on Pharmacological Mechanisms of Astragalus membranaceus in the Treatment of Gastric Ulcer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9007396. [PMID: 35140802 PMCID: PMC8820867 DOI: 10.1155/2022/9007396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND Astragalus membranaceus (AM, family: Leguminosae) exerts significant therapeutic effect on gastric ulcer (GU); however, there are scarce studies on its molecular mechanism against GU. This study aims to explore the key ingredients, key targets, and potential mechanisms of AM in the treatment of GU by utilizing network pharmacology and molecular docking. METHODS Several public databases were used to predict the targets of AM and GU, respectively, and the drug and disease targets were intersected to obtain the common targets. Next, the key ingredients and key targets were identified by constructing ingredient-target network and protein-protein-interaction (PPI) network. Gene Ontology biological processes (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were carried out on the common targets in order to ascertain the biological processes and signaling pathways involved. Finally, molecular docking was conducted to verify the binding affinity between the key ingredients and key targets. RESULTS A total of 552 predicted targets were obtained from 23 screened active ingredients, of which 203 targets were the common targets with GU. Quercetin, kaempferol, and isorhamnetin were identified as the key ingredients by constructing ingredient-target network, and TP53, AKT1, VEGFA, IL6, TNF, CASP3, and EGFR were selected as the key targets by constructing PPI network. GOBP and KEGG pathway enrichment analysis suggested that the therapeutic effect of AM on GU involved multiple biological processes and signaling pathways related to inflammation, oxidative stress, apoptosis, cell proliferation, and angiogenesis. Molecular docking validation demonstrated that all key ingredients had good binding affinity with the key targets. CONCLUSION This study revealed the key ingredients, key targets, and potential mechanisms of AM against GU, and these data may provide some crucial references for subsequent research and development of drugs for treating GU.
Collapse
|
5
|
Ozturk T, Sengul D, Sengul I. Helicobacter pylori and association between its positivity and anatomotopographic settlement in the stomach with the host age range. Ann Afr Med 2021; 20:1-8. [PMID: 33727504 PMCID: PMC8102889 DOI: 10.4103/aam.aam_69_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative, helically shaped flagellated bacterium. Major diseases associated with H. pylori infection include peptic ulcer, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The incidence of H. pylori in the anatomotopographic regions of the stomach, such as antrum, corpus, fundus, and incisura angularis, has been investigated. Do the rates of H. pylori in the settlements change over time according to the age ranges of the hosts? Does this change affect the diseases caused by or related to H. pylori? It is estimated that the outcomes, which have been obtained, may provide a new perspective in terms of understanding the etiopathogenesis of H. pylori-induced diseases. A comprehensive literature search of PubMed/MEDLINE databases had been conducted using a combination of terms, “Helicobacter pylori,” “Sydney System,” “stomach,” “pyloric antrum,” “gastric corpus,” “stomach cancer,” and “Helicobacter pylori and age.” There are very few articles examining the relationship between the topographic locations of H. pylori and host age range in the English language literature. Therefore, it is also purposed to emphasize the outcomes of our current research about the mentioned topic. In our opinion, similar studies should reveal the settlement and age range in the different geographic locations and societies as in our study. We believe that these findings will contribute to the efforts for understanding overtly of H. pylori-induced disease of the stomach.
Collapse
Affiliation(s)
- Tuncer Ozturk
- Department of General Surgery, Giresun University Faculty of Medicine, TR28100 Giresun, Turkey
| | - Demet Sengul
- Department of Pathology, Giresun University Faculty of Medicine, TR28100 Giresun, Turkey
| | - Ilker Sengul
- Department of General Surgery, Giresun University Faculty of Medicine, TR28100 Giresun, Turkey
| |
Collapse
|
6
|
Hossian AKMN, Mackenzie GG, Mattheolabakis G. miRNAs in gastrointestinal diseases: can we effectively deliver RNA-based therapeutics orally? Nanomedicine (Lond) 2019; 14:2873-2889. [PMID: 31735124 DOI: 10.2217/nnm-2019-0180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nucleic acid-based therapeutics are evaluated for their potential of treating a plethora of diseases, including cancer and inflammation. Short nucleic acids, such as miRNAs, have emerged as versatile regulators for gene expression and are studied for therapeutic purposes. However, their inherent instability in vivo following enteral and parenteral administration has prompted the development of novel methodologies for their delivery. Although research on the oral delivery of siRNAs is progressing, with the development and utilization of promising carrier-based methodologies for the treatment of a plethora of gastrointestinal diseases, research on miRNA-based oral therapeutics is lagging behind. In this review, we present the potential role of miRNAs in diseases of the GI tract, and analyze current research and the cardinal features of the novel carrier systems used for nucleic acid oral delivery that can be expanded for oral miRNA administration.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical & Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | | | - George Mattheolabakis
- School of Basic Pharmaceutical & Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
7
|
Activity and Functional Importance of Helicobacter pylori Virulence Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:35-56. [PMID: 31016624 DOI: 10.1007/5584_2019_358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is a very successful Gram-negative pathogen colonizing the stomach of humans worldwide. Infections with this bacterium can generate pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The best characterized H. pylori virulence factors that cause direct cell damage include an effector protein encoded by the cytotoxin-associated gene A (CagA), a type IV secretion system (T4SS) encoded in the cag-pathogenicity island (cag PAI), vacuolating cytotoxin A (VacA), γ-glutamyl transpeptidase (GGT), high temperature requirement A (HtrA, a serine protease) and cholesterol glycosyl-transferase (CGT). Since these H. pylori factors are either surface-exposed, secreted or translocated, they can directly interact with host cell molecules and are able to hijack cellular functions. Studies on these bacterial factors have progressed substantially in recent years. Here, we review the current status in the characterization of signaling cascades by these factors in vivo and in vitro, which comprise the disruption of cell-to-cell junctions, induction of membrane rearrangements, cytoskeletal dynamics, proliferative, pro-inflammatory, as well as, pro-apoptotic and anti-apoptotic responses or immune evasion. The impact of these signal transduction modules in the pathogenesis of H. pylori infections is discussed.
Collapse
|
8
|
Holtrup S, Heimerl T, Linne U, Altegoer F, Noll F, Waidner B. Biochemical characterization of the Helicobacter pylori bactofilin-homolog HP1542. PLoS One 2019; 14:e0218474. [PMID: 31233532 PMCID: PMC6590870 DOI: 10.1371/journal.pone.0218474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/03/2019] [Indexed: 01/11/2023] Open
Abstract
The human pathogen Helicobacter pylori is known for its colonization of the upper digestive system, where it escapes the harsh acidic environment by hiding in the mucus layer. One factor promoting this colonization is the helical cell shape of H. pylori. Among shape determining proteins are cytoskeletal elements like the recently discovered bactofilins. Bactofilins constitute a widespread family of polymer-forming bacterial proteins whose biology is still poorly investigated. Here we describe the first biochemical analysis of the bactofilin HP1542 of H. pylori reference strain 26695. Purified HP1542 forms sheet-like 2D crystalline assemblies, which clearly depend on a natively structured C-terminus. Polymerization properties and protein stability were investigated. Additionally, we also could demarcate HP1542 from amyloid proteins that share similarities with the bactofilin DUF domain. By using zonal centrifugation of total H. pylori cell lysates and immunfluorescence analysis we revealed peripheral membrane association of HP1542 mostly pronounced near mid-cell. Interestingly our results indicate that H. pylori bactofilin does not contribute to cell wall stability. This study might act as a starting point for biophysical studies of the H. pylori bactofilin biology as well as for the investigation of bactofilin cell physiology in this organism. Importantly, this study is the first biochemical analysis of a bactofilin in a human pathogen.
Collapse
Affiliation(s)
- Sven Holtrup
- LOEWE Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
- Faculty of Chemistry, Philipps-Universität, Marburg, Germany
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
- Faculty of Biology, Philipps-Universität, Marburg, Germany
| | - Uwe Linne
- Faculty of Chemistry, Philipps-Universität, Marburg, Germany
| | - Florian Altegoer
- LOEWE Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
- Faculty of Chemistry, Philipps-Universität, Marburg, Germany
| | - Frank Noll
- Faculty of Chemistry, Philipps-Universität, Marburg, Germany
| | - Barbara Waidner
- LOEWE Center for Synthetic Microbiology, Philipps-Universität, Marburg, Germany
- Faculty of Chemistry, Philipps-Universität, Marburg, Germany
| |
Collapse
|
9
|
Morphology of Helicobacter pylori as a result of peptidoglycan and cytoskeleton rearrangements. GASTROENTEROLOGY REVIEW 2018; 13:182-195. [PMID: 30302161 PMCID: PMC6173076 DOI: 10.5114/pg.2018.78284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is a Gram-negative, microaerophilic bacterium colonising the gastric mucosa. Normally, this bacterium has a spiral shape, which is crucial for proper colonisation of the stomach and cork-screwing penetration of dense mucin covering this organ. However, H. pylori may also form curved/straight rods, filamentous forms and coccoid forms. This morphological variability affects nutrient transport and respiration processes, as well as motility, the ability to form aggregates/biofilms, and resistance to adverse environmental factors. For this reason, a more accurate understanding of the molecular determinants that control the morphology of H. pylori seems to be crucial in increasing the effectiveness of antibacterial therapies directed against this microorganism. This article focuses on the molecular factors responsible for peptidoglycan and cytoskeleton rearrangements affecting H. pylori morphology and survivability. In addition, the existence of proteins associated with modifications of H. pylori morphology as potential targets in therapies reducing the virulence of this bacterium has been suggested.
Collapse
|
10
|
Elshazli RM, Salman DO, Kamel MM, Toraih EA, Fawzy MS. Genetic polymorphisms of IL-17A rs2275913, rs3748067 and IL-17F rs763780 in gastric cancer risk: evidence from 8124 cases and 9873 controls. Mol Biol Rep 2018; 45:1421-1444. [PMID: 29860554 DOI: 10.1007/s11033-018-4202-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Interleukin-17 (IL-17) is a critical cytokine involved in inflammation-associated cancers. Single nucleotide polymorphisms (SNPs) might promote carcinogenesis. In this current meta-analysis, we investigated the association of IL-17A and IL-17F gene polymorphisms with gastric cancer (GC) risk. Eligible genetic association studies were retrieved from PubMed, Web of Science and Scopus database sources. Two reviewers independently assessed methodological quality and extracted data from eligible articles. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Quantitative data synthesis was conducted using comprehensive meta-analysis v2. Subgroup analysis and heterogeneity analysis were performed. Begg's funnel plot and Egger's regression tests were used to judge publication bias. In silico data analysis was executed to analyze the functional and structural impact of the SNPs. A total of 21 case-control studies for rs2275913 c.-197G > A (7660 patients and 9409 controls), 9 studies for rs3748067 c.*1249C > T (3378 patients and 4120 controls), and 14 studies for rs763780 c.482A > G (4481 patients and 5354 controls) were included. The pooled estimate revealed an association between IL-17A rs2275913 polymorphism and the risk of GC under all genetic models (A vs. G, OR 1.187, 95% CI 1.086-1.297, P < 0.001; GA vs. GG, OR 1.108, 95% CI 1.008-1.218, P = 0.033; AA vs. GG, OR 1.484, 95% CI 1.236-1.781, P < 0.001), while no evidence of association was found with IL-17A rs3748067 or IL-17F rs763780 polymorphisms. Our results showed that IL-17A promoter rs2275913 variant might represent a potential risk factor for gastric cancer susceptibility.
Collapse
Affiliation(s)
- Rami M Elshazli
- Department of Biochemistry, Faculty of Physical Therapy, Horus University in Egypt (HUE), New Damietta, Egypt.
| | - Doaa O Salman
- Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maha M Kamel
- Department of Biochemistry, Faculty of Pharmacy, Horus University of Egypt (HUE), New Damietta, Egypt
| | - Eman A Toraih
- Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
11
|
Abstract
Helicobacter pylori, a Gram-negative bacterium, is a well-known risk factor for gastric cancer. H. pylori vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin that induces a wide range of cellular responses. Like many other bacterial toxins, VacA has been hypothesized to utilize lipid rafts to gain entry into host cells. Here, we used giant plasma membrane vesicles (GPMVs) as a model system to understand the preferential partitioning of VacA into lipid rafts. We show that a wild-type (WT) toxin predominantly associates with the raft phase. Acid activation of VacA enhances binding of the toxin to GPMVs but is not required for raft partitioning. VacA mutant proteins with alterations at the amino terminus (resulting in impaired membrane channel formation) and a nonoligomerizing VacA mutant protein retain the ability to preferentially associate with lipid rafts. Consistent with these results, the isolated VacA p55 domain was capable of binding to lipid rafts. We conclude that the affinity of VacA for rafts is independent of its capacity to oligomerize or form membrane channels.
Collapse
|
12
|
Harrer A, Boehm M, Backert S, Tegtmeyer N. Overexpression of serine protease HtrA enhances disruption of adherens junctions, paracellular transmigration and type IV secretion of CagA by Helicobacter pylori. Gut Pathog 2017; 9:40. [PMID: 28770008 PMCID: PMC5526239 DOI: 10.1186/s13099-017-0189-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The serine protease HtrA is an important factor for regulating stress responses and protein quality control in bacteria. In recent studies, we have demonstrated that the gastric pathogen Helicobacter pylori can secrete HtrA into the extracellular environment, where it cleaves-off the ectodomain of the tumor suppressor and adherens junction protein E-cadherin on gastric epithelial cells. RESULTS E-cadherin cleavage opens cell-to-cell junctions, allowing paracellular transmigration of the bacteria across polarized monolayers of MKN-28 and Caco-2 epithelial cells. However, rapid research progress on HtrA function is mainly hampered by the lack of ΔhtrA knockout mutants, suggesting that htrA may represent an essential gene in H. pylori. To circumvent this major handicap and to investigate the role of HtrA further, we overexpressed HtrA by introducing a second functional htrA gene copy in the chromosome and studied various virulence properties of the bacteria. The resulting data demonstrate that overexpression of HtrA in H. pylori gives rise to elevated rates of HtrA secretion, cleavage of E-cadherin, bacterial transmigration and delivery of the type IV secretion system (T4SS) effector protein CagA into polarized epithelial cells, but did not affect IL-8 chemokine production or the secretion of vacuolating cytotoxin VacA and γ-glutamyl-transpeptidase GGT. CONCLUSIONS These data provide for the first time genetic evidence in H. pylori that HtrA is a novel major virulence factor controlling multiple pathogenic activities of this important microbe.
Collapse
Affiliation(s)
- Aileen Harrer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Manja Boehm
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Abadi ATB. Strategies used by helicobacter pylori to establish persistent infection. World J Gastroenterol 2017; 23:2870-2882. [PMID: 28522905 PMCID: PMC5413782 DOI: 10.3748/wjg.v23.i16.2870] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative and motile bacterium that colonizes the hostile microniche of the human stomach, then persists for the host's entire life, if not effectively treated. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, it is no exaggeration to conclude that smart strategies are contributing to adaptation of the bacterium to its permanent host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable microniche? This question is slightly easier to answer if we presume the same clinical concept for both persistent infection and disease. Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of diseases such as gastric cancer in patients infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases such as gastric cancer. To escape the bactericidal activity of stomach acid, H. pylori secretes large amounts of surface-associated and cytosolic urease. The potential to avoid acidic conditions and immune evasion are discussed in order to explain the persistence of H. pylori colonization in the gastric mucosa, and data on bacterial genetic diversity are included. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the immune system and the many unfavorable features of living in the gastric microniche.
Collapse
|