1
|
Bonsignore G, Martinotti S, Ranzato E. Wound Repair and Ca 2+ Signalling Interplay: The Role of Ca 2+ Channels in Skin. Cells 2024; 13:491. [PMID: 38534335 PMCID: PMC10969298 DOI: 10.3390/cells13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The process of wound healing is intricate and tightly controlled, involving a number of different cellular and molecular processes. Numerous cellular functions, especially those related to wound healing, depend critically on calcium ions (Ca2+). Ca2+ channels are proteins involved in signal transduction and communication inside cells that allow calcium ions to pass through cell membranes. Key Ca2+ channel types involved in wound repair are described in this review.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy; (G.B.); (S.M.)
- SSD Laboratori di Ricerca—DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
2
|
Witczyńska A, Alaburda A, Grześk G, Nowaczyk J, Nowaczyk A. Unveiling the Multifaceted Problems Associated with Dysrhythmia. Int J Mol Sci 2023; 25:263. [PMID: 38203440 PMCID: PMC10778936 DOI: 10.3390/ijms25010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Dysrhythmia is a term referring to the occurrence of spontaneous and repetitive changes in potentials with parameters deviating from those considered normal. The term refers to heart anomalies but has a broader meaning. Dysrhythmias may concern the heart, neurological system, digestive system, and sensory organs. Ion currents conducted through ion channels are a universal phenomenon. The occurrence of channel abnormalities will therefore result in disorders with clinical manifestations depending on the affected tissue, but phenomena from other tissues and organs may also manifest themselves. A similar problem concerns the implementation of pharmacotherapy, the mechanism of which is related to the impact on various ion currents. Treatment in this case may cause unfavorable effects on other tissues and organs. Drugs acting through the modulation of ion currents are characterized by relatively low tissue specificity. To assess a therapy's efficacy and safety, the risk of occurrences in other tissues with similar mechanisms of action must be considered. In the present review, the focus is shifted prominently onto a comparison of abnormal electrical activity within different tissues and organs. This review includes an overview of the types of dysrhythmias and the basic techniques of clinical examination of electrophysiological disorders. It also presents a concise overview of the available pharmacotherapy in particular diseases. In addition, the authors review the relevant ion channels and their research technique based on patch clumping.
Collapse
Affiliation(s)
- Adrianna Witczyńska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Aidas Alaburda
- Department of Neurobiology and Biophysics, Institute of Bioscience, Vilnius University Saulėtekio Ave. 7, LT-10257 Vilnius, Lithuania;
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| |
Collapse
|
3
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Ritzer A, Roeschl T, Nay S, Rudakova E, Volk T. Rapid Pacing Decreases L-type Ca 2+ Current and Alters Cacna1c Isogene Expression in Primary Cultured Rat Left Ventricular Myocytes. J Membr Biol 2023; 256:257-269. [PMID: 36995425 DOI: 10.1007/s00232-023-00284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
The L-type calcium current (ICaL) is the first step in cardiac excitation-contraction-coupling and plays an important role in regulating contractility, but also in electrical and mechanical remodeling. Primary culture of cardiomyocytes, a widely used tool in cardiac ion channel research, is associated with substantial morphological, functional and electrical changes some of which may be prevented by electrical pacing. We therefore investigated ICaL directly after cell isolation and after 24 h of primary culture with and without regular pacing at 1 and 3 Hz in rat left ventricular myocytes. Moreover, we analyzed total mRNA expression of the pore forming subunit of the L-type Ca2+ channel (cacna1c) as well as the expression of splice variants of its exon 1 that contribute to specificity of ICaL in different tissue such as cardiac myocytes or smooth muscle. 24 h incubation without pacing decreased ICaL density by ~ 10% only. Consistent with this decrease we observed a decrease in the expression of total cacna1c and of exon 1a, the dominant variant of cardiomyocytes, while expression of exon 1b and 1c increased. Pacing for 24 h at 1 and 3 Hz led to a substantial decrease in ICaL density by 30%, mildly slowed ICaL inactivation and shifted steady-state inactivation to more negative potentials. Total cacna1c mRNA expression was substantially decreased by pacing, as was the expression of exon 1b and 1c. Taken together, electrical silence introduces fewer alterations in ICaL density and cacna1c mRNA expression than pacing for 24 h and should therefore be the preferred approach for primary culture of cardiomyocytes.
Collapse
Affiliation(s)
- Anne Ritzer
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Tobias Roeschl
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Sandra Nay
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Elena Rudakova
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Tilmann Volk
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany.
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
5
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
6
|
Wang M, Sun Y, Li L, Wu P, Dkw O, Shi H. Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases. Front Pharmacol 2021; 12:702264. [PMID: 34489697 PMCID: PMC8418299 DOI: 10.3389/fphar.2021.702264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Dysfunctional skin barrier and impaired skin homeostasis may lead to or aggravate a series of dermatologic diseases. A large variety of biological events and bioactive molecules are involved in the process of skin wound healing and functional recovery. Calcium ions (Ca2+) released from intracellular stores as well as influx through plasma membrane are essential to skin function. Growing evidence suggests that calcium influx is mainly regulated by calcium-sensing receptors and channels, including voltage-gated, transient potential receptor, store-operated, and receptor-operated calcium channels, which not only maintain cellular Ca2+ homeostasis, but also participate in cell proliferation and skin cell homeostasis through Ca2+-sensitive proteins such as calmodulin (CaM). Furthermore, distinct types of Ca2+ channels not merely work separately, they may work concertedly to regulate cell function. In this review, we discussed different calcium-sensing receptors and channels, including voltage-gated, transient receptor potential, store-operated, and receptor-operated calcium channels, particularly focusing on their regulatory functions and inherent interactions as well as calcium channels-related reagents and drugs, which is expected to bridge basic research and clinical applications in dermatologic diseases.
Collapse
Affiliation(s)
- Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Linli Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ocansey Dkw
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China.,Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Conrad R, Kortzak D, Guzman GA, Miranda-Laferte E, Hidalgo P. Ca V β controls the endocytic turnover of Ca V 1.2 L-type calcium channel. Traffic 2021; 22:180-193. [PMID: 33890356 DOI: 10.1111/tra.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/17/2021] [Accepted: 04/17/2021] [Indexed: 01/10/2023]
Abstract
Membrane depolarization activates the multisubunit CaV 1.2 L-type calcium channel initiating various excitation coupling responses. Intracellular trafficking into and out of the plasma membrane regulates the channel's surface expression and stability, and thus, the strength of CaV 1.2-mediated Ca2+ signals. The mechanisms regulating the residency time of the channel at the cell membrane are unclear. Here, we coexpressed the channel core complex CaV 1.2α1 pore-forming and auxiliary CaV β subunits and analyzed their trafficking dynamics from single-particle-tracking trajectories. Speed histograms obtained for each subunit were best fitted to a sum of diffusive and directed motion terms. The same mean speed for the highest-mobility state underlying directed motion was found for all subunits. The frequency of this component increased by covalent linkage of CaV β to CaV 1.2α1 suggesting that high-speed transport occurs in association with CaV β. Selective tracking of CaV 1.2α1 along the postendocytic pathway failed to show the highly mobile state, implying CaV β-independent retrograde transport. Retrograde speeds of CaV 1.2α1 are compatible with myosin VI-mediated backward transport. Moreover, residency time at the cell surface was significantly prolonged when CaV 1.2α1 was covalently linked to CaV β. Thus, CaV β promotes fast transport speed along anterograde trafficking and acts as a molecular switch controlling the endocytic turnover of L-type calcium channels.
Collapse
Affiliation(s)
- Rachel Conrad
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Gustavo A Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Erick Miranda-Laferte
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing (IBI-1), Molecular and Cellular Physiology, Forschungszentrum Jülich, Jülich, Germany.,Institute of Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
8
|
Yuan H, Chang QY, Chen J, Wang YT, Gan ZJ, Wen S, Li TT, Xiong LL. A retrospective analysis of the effects of different analgesics on the pain of patients with traumatic thoracolumbar fractures in the peri-treatment period. J Orthop Surg Res 2021; 16:268. [PMID: 33865404 PMCID: PMC8052732 DOI: 10.1186/s13018-021-02401-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To analyze and compare the effects of peri-treatment analgesics on acute and chronic pain and postoperative functional recovery of patients with thoracolumbar fractures, so as to guide the clinical drug use. METHODS Seven hundred nineteen patients with thoracolumbar fractures were collected and divided into acetaminophen dihydrocodeine, celecoxib, and etoricoxib groups. The main indicators were the degree of postoperative pain (visual analog scale (VAS)), the incidence of chronic pain and postoperative functional recovery (Oswestry dysfunction index (ODI) and Japanese Orthopedics Association score (JOA)), which were continuously tracked through long-term telephone follow-up. The correlation analysis of ODI-pain score, peri-treatment VAS score, and ODI index was performed, and bivariate regression analysis was conducted to understand the risk factors for chronic pain. RESULTS Regression analysis showed that severe spinal cord injury and peri-treatment use of acetaminophen dihydrocodeine were both one of the risk factors for postoperative chronic pain. But there were no statistically conspicuous differences in basic characteristics, preoperative injury, and intraoperative conditions. Compared with the other two groups, patients in the acetaminophen dihydrocodeine group had longer peri-therapeutic analgesic use, higher pain-related scores (VAS 1 day preoperatively, VAS 1 month postoperatively, and ODI-pain 1 year postoperatively), higher VAS variation, higher incidence of chronic pain 1 year after surgery, and higher ODI index. And other ODI items and JOA assessments showed no statistically significant differences. In addition, the correlation analysis showed that the peri-treatment pain score was correlated with the severity of postoperative chronic pain. CONCLUSION Although the peri-treatment analgesic effect of acetaminophen dihydrocodeine is good, it is still necessary to combine analgesics with different mechanisms of action for patients with severe preoperative pain of thoracolumbar fracture, so as to inhibit the incidence of postoperative chronic pain and improve the quality of postoperative rehabilitation.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Spinal Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Quan-Yuan Chang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610044, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Jie Chen
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610044, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Ya-Ting Wang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610044, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Zong-Jin Gan
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610044, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Song Wen
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ting-Ting Li
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610044, China.
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
9
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|