1
|
Maurice K, Laurent-Webb L, Bourceret A, Boivin S, Boukcim H, Selosse MA, Ducousso M. Networking the desert plant microbiome, bacterial and fungal symbionts structure and assortativity in co-occurrence networks. ENVIRONMENTAL MICROBIOME 2024; 19:65. [PMID: 39223675 PMCID: PMC11370318 DOI: 10.1186/s40793-024-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.
Collapse
Affiliation(s)
- Kenji Maurice
- Cirad-UMR AGAP, Univ Montpellier, INRAE, 34398, Montpellier Cedex 5, France.
| | - Liam Laurent-Webb
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
| | - Amélia Bourceret
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
| | - Stéphane Boivin
- Department of Research and Development, VALORHIZ, Montpellier, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, Montpellier, France
- ASARI, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 Rue Cuvier, 75005, Paris, France
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
- Institut Universitaire de France, Paris, France
| | - Marc Ducousso
- Cirad-UMR AGAP, Univ Montpellier, INRAE, 34398, Montpellier Cedex 5, France
| |
Collapse
|
2
|
Robin-Soriano A, Maurice K, Boivin S, Bourceret A, Laurent-Webb L, Youssef S, Nespoulous J, Boussière I, Berder J, Damasio C, Vincent B, Boukcim H, Ducousso M, Gros-Balthazard M. Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach. MYCORRHIZA 2024; 34:251-270. [PMID: 39023766 DOI: 10.1007/s00572-024-01160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.
Collapse
Affiliation(s)
| | - Kenji Maurice
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Stéphane Boivin
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Amelia Bourceret
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Liam Laurent-Webb
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, Paris, France
| | - Sami Youssef
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Jérôme Nespoulous
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | - Inès Boussière
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Julie Berder
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
| | | | - Bryan Vincent
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, Montferrier sur Lez, France
- ASARI, Mohammed VI Polytechnic University, Laâyoune, Morocco
| | - Marc Ducousso
- AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | |
Collapse
|
3
|
Määttä T, Malhotra A. The hidden roots of wetland methane emissions. GLOBAL CHANGE BIOLOGY 2024; 30:e17127. [PMID: 38337165 DOI: 10.1111/gcb.17127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024]
Abstract
Wetlands are the largest natural source of methane (CH4 ) globally. Climate and land use change are expected to alter CH4 emissions but current and future wetland CH4 budgets remain uncertain. One important predictor of wetland CH4 flux, plants, play an important role in providing substrates for CH4 -producing microbes, increasing CH4 consumption by oxygenating the rhizosphere, and transporting CH4 from soils to the atmosphere. Yet, there remain various mechanistic knowledge gaps regarding the extent to which plant root systems and their traits influence wetland CH4 emissions. Here, we present a novel conceptual framework of the relationships between a range of root traits and CH4 processes in wetlands. Based on a literature review, we propose four main CH4 -relevant categories of root function: gas transport, carbon substrate provision, physicochemical influences and root system architecture. Within these categories, we discuss how individual root traits influence CH4 production, consumption, and transport (PCT). Our findings reveal knowledge gaps concerning trait functions in physicochemical influences, and the role of mycorrhizae and temporal root dynamics in PCT. We also identify priority research needs such as integrating trait measurements from different root function categories, measuring root-CH4 linkages along environmental gradients, and following standardized root ecology protocols and vocabularies. Thus, our conceptual framework identifies relevant belowground plant traits that will help improve wetland CH4 predictions and reduce uncertainties in current and future wetland CH4 budgets.
Collapse
Affiliation(s)
- Tiia Määttä
- Department of Geography, University of Zürich, Zürich, Switzerland
| | - Avni Malhotra
- Department of Geography, University of Zürich, Zürich, Switzerland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
4
|
Schaffer‐Morrison SAZ, Zak DR. Mycorrhizal fungal and tree root functional traits: Strategies for integration and future directions. Ecosphere 2023. [DOI: 10.1002/ecs2.4437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Affiliation(s)
| | - Donald R. Zak
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
- School for Environment and Sustainability University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
5
|
Ward EB, Duguid MC, Kuebbing SE, Lendemer JC, Bradford MA. The functional role of ericoid mycorrhizal plants and fungi on carbon and nitrogen dynamics in forests. THE NEW PHYTOLOGIST 2022; 235:1701-1718. [PMID: 35704030 DOI: 10.1111/nph.18307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Ericoid mycorrhizal (ErM) shrubs commonly occur in forest understories and could therefore alter arbuscular (AM) and/or ectomycorrhizal (EcM) tree effects on soil carbon and nitrogen dynamics. Specifically, ErM fungi have extensive organic matter decay capabilities, and ErM plant and fungal tissues have high concentrations of secondary compounds that can form persistent complexes in the soil. Together, these traits could contribute to organic matter accumulation and inorganic nutrient limitation. These effects could also differ in AM- vs EcM-dominated stands at multiple scales within and among forest biomes by, for instance, altering fungal guild interactions. Most work on ErM effects in forests has been conducted in boreal forests dominated by EcM trees. However, ErM plants occur in c. 96, 69 and 29% of boreal, temperate and tropical forests, respectively. Within tropical montane forests, the effects of ErM plants could be particularly pronounced because their traits are more distinct from AM than EcM trees. Because ErM fungi can function as free-living saprotrophs, they could also be more resilient to forest disturbances than obligate symbionts. Further consideration of ErM effects within and among forest biomes could improve our understanding of how cooccurring mycorrhizal types interact to collectively affect soil carbon and nitrogen dynamics under changing conditions.
Collapse
Affiliation(s)
- Elisabeth B Ward
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- The New York Botanical Garden, The Bronx, NY, 10458, USA
| | - Marlyse C Duguid
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sara E Kuebbing
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - Mark A Bradford
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
6
|
Marín C, Godoy R, Rubio J. Gaps in South American Mycorrhizal Biodiversity and Ecosystem Function Research. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
The Current Scenario of the Distribution, Functionality, and Ecosystemic Role of the Arbuscular Mycorrhizal Symbiosis in Chile. Fungal Biol 2022. [DOI: 10.1007/978-3-031-12994-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ferlian O, Goldmann K, Eisenhauer N, Tarkka MT, Buscot F, Heintz-Buschart A. Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi along a tree diversity gradient. ISME COMMUNICATIONS 2021; 1:40. [PMID: 37938639 PMCID: PMC9723774 DOI: 10.1038/s43705-021-00042-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 04/26/2023]
Abstract
Plant diversity and plant-related ecosystem functions have been important in biodiversity-ecosystem functioning studies. However, biotic interactions with mycorrhizal fungi have been understudied although they are crucial for plant-resource acquisition. Here, we investigated the effects of tree species richness and tree mycorrhizal type on arbuscular (AMF) and ectomycorrhizal fungal (EMF) communities. We aimed to understand how dissimilarities in taxa composition and beta-diversity are related to target trees and neighbours of the same or different mycorrhizal type. We sampled a tree diversity experiment with saplings (~7 years old), where tree species richness (monocultures, 2-species, and 4-species mixtures) and mycorrhizal type were manipulated. AMF and EMF richness significantly increased with increasing tree species richness. AMF richness of mixture plots resembled that of the sum of the respective monocultures, whereas EMF richness of mixture plots was lower compared to the sum of the respective monocultures. Specialisation scores revealed significantly more specialised AMF than EMF suggesting that, in contrast to previous studies, AMF were more specialised, whereas EMF were not. We further found that AMF communities were little driven by the surrounding trees, whereas EMF communities were. Our study revealed drivers of mycorrhizal fungal communities and further highlights the distinct strategies of AMF and EMF.
Collapse
Affiliation(s)
- Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany.
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany.
| | - Kezia Goldmann
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, Leipzig, Germany
| | - Mika T Tarkka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, Germany
- Department Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, Halle (Saale), Germany
| |
Collapse
|
9
|
Bennett AE, Classen AT. Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias. Ecology 2020; 101:e02978. [PMID: 31953955 DOI: 10.1002/ecy.2978] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Climate change is altering the interactions among plants and soil organisms in ways that will alter the structure and function of ecosystems. We reviewed the literature and developed a map of studies focused on how the three most common types of mycorrhizal fungi (arbuscular mycorrhizal [AM], ectomycorrhizal [EcM], and ericoid mycorrhizal [ErM] fungi) respond to elevated atmospheric carbon dioxide concentrations (eCO2 ), climatic warming, and changes in the distribution of precipitation. Broadly, we ask how do mycorrhizal fungi respond to climate change, how do these responses vary by fungal type, and how do mycorrhizal traits influence plant adaptation, movement, or extinction in response to climatic change? First, we found that 92% of studies were conducted in the northern hemisphere, and plant host, ecosystem type and study location were only correlated with each other in the northern hemisphere because studies across all mycorrhizal fungal types were only common in the northern hemisphere. Second, we show that temperature and rainfall variability had more variable effects than eCO2 on mycorrhizal fungal structures, but these effects were context dependent. Third, while mycorrhizal fungal types vary in their responses to climate change, it appears that warming leads to more variable responses in ectomycorrhizal than in arbuscular mycorrhizal fungi. Finally, we discuss common traits of mycorrhizal fungi that could aid in fungal and plant adaption to climate change. We posit that mycorrhizal fungi can buffer plant hosts against extinction risk, they can facilitate or retard the dispersal success of plants moving away from poor environments, and, by buffering host plants, they can enable host plant adaptation to new climates. All of these influences are, however, context dependent a finding that reflects the complex traits of mycorrhizal fungi as a group, the diversity of plant species they associate with and the variation in ecosystems in which they reside. Overall, while we point out many gaps in our understanding of the influence of climate changes on mycorrhizal fungi, we also highlight the large number of opportunities for researching plant and mycorrhizal fungal responses to and mitigation of climate changes.
Collapse
Affiliation(s)
- Alison E Bennett
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, 43210, USA
| | - Aimée T Classen
- Rubenstein School of Environment & Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA.,The Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA.,Center for Macroecology, Evolution and Climate, The Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, DK-2100, Denmark
| |
Collapse
|
10
|
Jo I, Fei S, Oswalt CM, Domke GM, Phillips RP. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. SCIENCE ADVANCES 2019; 5:eaav6358. [PMID: 30989116 PMCID: PMC6457943 DOI: 10.1126/sciadv.aav6358] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 05/18/2023]
Abstract
Plant-fungal symbioses play critical roles in vegetation dynamics and nutrient cycling, modulating the impacts of global changes on ecosystem functioning. Here, we used forest inventory data consisting of more than 3 million trees to develop a spatially resolved "mycorrhizal tree map" of the contiguous United States. We show that abundances of the two dominant mycorrhizal tree groups-arbuscular mycorrhizal (AM) and ectomycorrhizal trees-are associated primarily with climate. Further, we show that anthropogenic influences, primarily nitrogen (N) deposition and fire suppression, in concert with climate change, have increased AM tree dominance during the past three decades in the eastern United States. Given that most AM-dominated forests in this region are underlain by soils with high N availability, our results suggest that the increasing abundance of AM trees has the potential to induce nutrient acceleration, with critical consequences for forest productivity, ecosystem carbon and nutrient retention, and feedbacks to climate change.
Collapse
Affiliation(s)
- Insu Jo
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Songlin Fei
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher M. Oswalt
- Southern Research Station, Forest Service, U.S. Department of Agriculture, Knoxville, TN 37919, USA
| | - Grant M. Domke
- Northern Research Station, Forest Service, U.S. Department of Agriculture, St. Paul, MN 55108, USA
| | | |
Collapse
|
11
|
Andrew C, Büntgen U, Egli S, Senn‐Irlet B, Grytnes J, Heilmann‐Clausen J, Boddy L, Bässler C, Gange AC, Heegaard E, Høiland K, Kirk PM, Krisai‐Greilhüber I, Kuyper TW, Kauserud H. Open-source data reveal how collections-based fungal diversity is sensitive to global change. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01227. [PMID: 30937219 PMCID: PMC6426159 DOI: 10.1002/aps3.1227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/29/2018] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Fungal diversity (richness) trends at large scales are in urgent need of investigation, especially through novel situations that combine long-term observational with environmental and remotely sensed open-source data. METHODS We modeled fungal richness, with collections-based records of saprotrophic (decaying) and ectomycorrhizal (plant mutualistic) fungi, using an array of environmental variables across geographical gradients from northern to central Europe. Temporal differences in covariables granted insight into the impacts of the shorter- versus longer-term environment on fungal richness. RESULTS Fungal richness varied significantly across different land-use types, with highest richness in forests and lowest in urban areas. Latitudinal trends supported a unimodal pattern in diversity across Europe. Temperature, both annual mean and range, was positively correlated with richness, indicating the importance of seasonality in increasing richness amounts. Precipitation seasonality notably affected saprotrophic fungal diversity (a unimodal relationship), as did daily precipitation of the collection day (negatively correlated). Ectomycorrhizal fungal richness differed from that of saprotrophs by being positively associated with tree species richness. DISCUSSION Our results demonstrate that fungal richness is strongly correlated with land use and climate conditions, especially concerning seasonality, and that ongoing global change processes will affect fungal richness patterns at large scales.
Collapse
Affiliation(s)
- Carrie Andrew
- Swiss Federal Research Institute WSLCH‐8903BirmensdorfSwitzerland
- Section for Genetics and Evolutionary Biology (EVOGENE)University of OsloBlindernveien 310316OsloNorway
| | - Ulf Büntgen
- Swiss Federal Research Institute WSLCH‐8903BirmensdorfSwitzerland
- Department of GeographyUniversity of CambridgeCB2 3ENCambridgeUnited Kingom
- Global Change Research Centre and Masaryk University613 00BrnoCzech Republic
| | - Simon Egli
- Swiss Federal Research Institute WSLCH‐8903BirmensdorfSwitzerland
| | | | - John‐Arvid Grytnes
- Department of Biological SciencesUniversity of BergenP.O. Box 7803N‐5020BergenNorway
| | - Jacob Heilmann‐Clausen
- Centre for Macroecology, Evolution and ClimateNatural History Museum of DenmarkUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Lynne Boddy
- School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUnited Kingdom
| | - Claus Bässler
- Bavarian Forest National ParkFreyunger Str. 294481GrafenauGermany
- Chair for Terrestrial EcologyTechnical University of MunichHans‐Carl‐von‐Carlowitz‐Platz 285354FreisingGermany
| | - Alan C. Gange
- School of Biological SciencesRoyal HollowayUniversity of LondonEghamSurreyTW20 0EXUnited Kingdom
| | - Einar Heegaard
- Forestry and Forest ResourcesNorwegian Institute of Bioeconomy ResearchFanaflaten 4N‐5244FanaNorway
| | - Klaus Høiland
- Section for Genetics and Evolutionary Biology (EVOGENE)University of OsloBlindernveien 310316OsloNorway
| | - Paul M. Kirk
- Mycology SectionJodrell LaboratoryRoyal Botanic GardenKew, RichmondSurreyTW9 3DSUnited Kingdom
| | | | - Thomas W. Kuyper
- Department of Soil QualityWageningen UniversityP.O. Box 476700 AAWageningenThe Netherlands
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE)University of OsloBlindernveien 310316OsloNorway
| |
Collapse
|
12
|
Latitudinal Distribution of Mycorrhizal Types in Native and Alien Trees in Montane Ecosystems from Southern South America. Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
A Systematic Review of South American and European Mycorrhizal Research: Is there a Need for Scientific Symbiosis? Fungal Biol 2019. [DOI: 10.1007/978-3-030-15228-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. THE NEW PHYTOLOGIST 2018; 220:1108-1115. [PMID: 29355963 DOI: 10.1111/nph.14976] [Citation(s) in RCA: 572] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/09/2017] [Indexed: 05/03/2023]
Abstract
Contents Summary 1108 I. Introduction 1108 II. Mycorrhizal plant diversity at global and local scales 1108 III. Mycorrhizal evolution in plants: a brief update 1111 IV. Conclusions and perspectives 1114 References 1114 SUMMARY: The majority of vascular plants are mycorrhizal: 72% are arbuscular mycorrhizal (AM), 2.0% are ectomycorrhizal (EcM), 1.5% are ericoid mycorrhizal and 10% are orchid mycorrhizal. Just 8% are completely nonmycorrhizal (NM), whereas 7% have inconsistent NM-AM associations. Most NM and NM-AM plants are nutritional specialists (e.g. carnivores and parasites) or habitat specialists (e.g. hydrophytes and epiphytes). Mycorrhizal associations are consistent in most families, but there are exceptions with complex roots (e.g. both EcM and AM). We recognize three waves of mycorrhizal evolution, starting with AM in early land plants, continuing in the Cretaceous with multiple new NM or EcM linages, ericoid and orchid mycorrhizas. The third wave, which is recent and ongoing, has resulted in root complexity linked to rapid plant diversification in biodiversity hotspots.
Collapse
Affiliation(s)
- Mark C Brundrett
- Faculty of Science, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Swan Region Delivery Centre, Department of Biodiversity, Conservation and Attractions, Swan Region, Locked Bag 104, Bentley, WA, 6983, Australia
| | - Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, Tartu, 50411, Estonia
| |
Collapse
|