1
|
Gambogi CW, Birchak GJ, Mer E, Brown DM, Yankson G, Kixmoeller K, Gavade JN, Espinoza JL, Kashyap P, Dupont CL, Logsdon GA, Heun P, Glass JI, Black BE. Efficient formation of single-copy human artificial chromosomes. Science 2024; 383:1344-1349. [PMID: 38513017 PMCID: PMC11059994 DOI: 10.1126/science.adj3566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/23/2024] [Indexed: 03/23/2024]
Abstract
Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125-base pair DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. We describe an approach that efficiently forms single-copy HACs. It employs a ~750-kilobase construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | - Gabriel J. Birchak
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Graduate Program in Cell and Molecular Biology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Elie Mer
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | | | - George Yankson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | - Janardan N. Gavade
- Department of Biochemistry and Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | | | - Prakriti Kashyap
- Department of Biochemistry and Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | | | - Glennis A. Logsdon
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
| | - Patrick Heun
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Ben E. Black
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute
- Graduate Program in Cell and Molecular Biology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
2
|
Kyriacou E, Heun P. Centromere structure and function: lessons from Drosophila. Genetics 2023; 225:iyad170. [PMID: 37931172 PMCID: PMC10697814 DOI: 10.1093/genetics/iyad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 11/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster serves as a powerful model organism for advancing our understanding of biological processes, not just by studying its similarities with other organisms including ourselves but also by investigating its differences to unravel the underlying strategies that evolved to achieve a common goal. This is particularly true for centromeres, specialized genomic regions present on all eukaryotic chromosomes that function as the platform for the assembly of kinetochores. These multiprotein structures play an essential role during cell division by connecting chromosomes to spindle microtubules in mitosis and meiosis to mediate accurate chromosome segregation. Here, we will take a historical perspective on the study of fly centromeres, aiming to highlight not only the important similarities but also the differences identified that contributed to advancing centromere biology. We will discuss the current knowledge on the sequence and chromatin organization of fly centromeres together with advances for identification of centromeric proteins. Then, we will describe both the factors and processes involved in centromere organization and how they work together to provide an epigenetic identity to the centromeric locus. Lastly, we will take an evolutionary point of view of centromeres and briefly discuss current views on centromere drive.
Collapse
Affiliation(s)
- Eftychia Kyriacou
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patrick Heun
- Wellcome Centre of Cell Biology, School of Biological Sciences, University of Edinburgh, EH9 3BF Edinburgh, UK
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Gambogi CW, Mer E, Brown DM, Yankson G, Gavade JN, Logsdon GA, Heun P, Glass JI, Black BE. Efficient Formation of Single-copy Human Artificial Chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547284. [PMID: 37546784 PMCID: PMC10402137 DOI: 10.1101/2023.06.30.547284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125 bp DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. Here, we describe an approach that efficiently forms single-copy HACs. It employs a ~750 kb construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.
Collapse
Affiliation(s)
- Craig W. Gambogi
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Elie Mer
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | | | - George Yankson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Janardan N. Gavade
- Department of Biochemistry and Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Glennis A. Logsdon
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Patrick Heun
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Ben E. Black
- Department of Biochemistry and Biophysics
- Graduate Program in Biochemistry and Molecular Biophysics
- Penn Center for Genome Integrity
- Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
4
|
Gambogi CW, Dawicki-McKenna JM, Logsdon GA, Black BE. The unique kind of human artificial chromosome: Bypassing the requirement for repetitive centromere DNA. Exp Cell Res 2020; 391:111978. [PMID: 32246994 DOI: 10.1016/j.yexcr.2020.111978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
Centromeres are essential components of all eukaryotic chromosomes, including artificial/synthetic ones built in the laboratory. In humans, centromeres are typically located on repetitive α-satellite DNA, and these sequences are the "major ingredient" in first-generation human artificial chromosomes (HACs). Repetitive centromeric sequences present a major challenge for the design of synthetic mammalian chromosomes because they are difficult to synthesize, assemble, and characterize. Additionally, in most eukaryotes, centromeres are defined epigenetically. Here, we review the role of the genetic and epigenetic contributions to establishing centromere identity, highlighting recent work to hijack the epigenetic machinery to initiate centromere identity on a new generation of HACs built without α-satellite DNA. We also discuss the opportunities and challenges in developing useful unique sequence-based HACs.
Collapse
Affiliation(s)
- Craig W Gambogi
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, Penn Center for Genome Integrity, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Ling YH, Lin Z, Yuen KWY. Genetic and epigenetic effects on centromere establishment. Chromosoma 2019; 129:1-24. [PMID: 31781852 DOI: 10.1007/s00412-019-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023]
Abstract
Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained through cell cycles and generations. Recent studies have investigated how the centromere-specific histone H3 variant CENP-A is assembled and replenished after DNA replication to epigenetically propagate the centromere identity. However, existing centromeres occasionally become inactivated, with or without change in underlying DNA sequences, or lost after chromosomal rearrangements, resulting in acentric chromosomes. New centromeres, known as neocentromeres, may form on ectopic, non-centromeric chromosomal regions to rescue acentric chromosomes from being lost, or form dicentric chromosomes if the original centromere is still active. In addition, de novo centromeres can form after chromatinization of purified DNA that is exogenously introduced into cells. Here, we review the phenomena of naturally occurring and experimentally induced new centromeres and summarize the genetic (DNA sequence) and epigenetic features of these new centromeres. We compare the characteristics of new and native centromeres to understand whether there are different requirements for centromere establishment and propagation. Based on our understanding of the mechanisms of new centromere formation, we discuss the perspectives of developing more stably segregating human artificial chromosomes to facilitate gene delivery in therapeutics and research.
Collapse
Affiliation(s)
- Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
6
|
Logsdon GA, Gambogi CW, Liskovykh MA, Barrey EJ, Larionov V, Miga KH, Heun P, Black BE. Human Artificial Chromosomes that Bypass Centromeric DNA. Cell 2019; 178:624-639.e19. [PMID: 31348889 PMCID: PMC6657561 DOI: 10.1016/j.cell.2019.06.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mikhail A Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Evelyne J Barrey
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karen H Miga
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Ben E Black
- Department of Biochemistry and Biophysics, Graduate Program in Biochemistry and Molecular Biophysics, and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Cook DM, Bennett M, Friedman B, Lawrimore J, Yeh E, Bloom K. Fork pausing allows centromere DNA loop formation and kinetochore assembly. Proc Natl Acad Sci U S A 2018; 115:11784-11789. [PMID: 30373818 PMCID: PMC6243264 DOI: 10.1073/pnas.1806791115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.
Collapse
Affiliation(s)
- Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Maggie Bennett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
8
|
Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Curr Opin Cell Biol 2018; 52:58-65. [PMID: 29454259 DOI: 10.1016/j.ceb.2018.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/27/2022]
Abstract
During female meiosis, only one of four meiotic products is retained in the egg. It was previously proposed that chromosomes might compete for inclusion in the egg via their centromere 'strength'. Recent findings have revealed the primary requirements for such 'centromere drive'. First, CDC42 signaling from the oocyte cortex renders the meiotic I spindle asymmetric. Second, 'stronger' centromeres preferentially detach from microtubules in cortical proximity, making them more likely to orient away from the cortex, and be included in the egg. Third, centromeric satellite DNA expansions result in greater recruitment of centromeric proteins. Despite these mechanistic insights, it is still unclear if centromere drive elicits rapid evolution of centromeric proteins, thereby driving cellular incompatibilities and wreaking havoc on centromere stability.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, USA. mailto:
| |
Collapse
|