1
|
Guo W, Li X, Yang T, Huang C, Zhao B, Wang P. Identification and expression of the Di19 gene family in response to abiotic stress in common bean ( Phaseolus vulgaris L.). Front Genet 2024; 15:1401011. [PMID: 38873116 PMCID: PMC11169598 DOI: 10.3389/fgene.2024.1401011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Drought-induced 19 (Di19) protein plays critical biological functions in response to adversity as well as in plant growth and development. Exploring the role and mechanism of Di19 in abiotic stress responses is of great significance for improving plant tolerance. In this study, six Di19 genes were identified in the common bean (Phaseolus vulgaris L.), which were mainly derived from segmental duplications. These genes share conserved exon/intron structures and were classified into three subfamilies based on their phylogenetic relationships. The composition and arrangement of conserved motifs were consistent with their phylogenetic relationships. Many hormone- and stress-responsive elements were distributed in the promoters region of PvDi19 genes. Variations in histidine residues in the Cys2/His2 (C2H2) zinc-finger domains resulted in an atypical tertiary structure of PvDi19-5. Gene expression analysis showed rapid induction of PvDi19-1 in roots by 10% PEG treatment, and PvDi19-2 in leaves by 20% PEG treatment, respectively. Most PvDi19s exhibited insensitivity to saline-alkali stress, except for PvDi19-6, which was notably induced during later stages of treatment. The most common bean Di19 genes were inhibited or not regulated by cadmium stress, but the expression of PvDi19-6 in roots was significantly upregulated when subjected to lower concentrations of cadmium (5 mmol). Moreover, Di19s exhibited greater sensitivity to severe cold stress (6°C). These findings enhance our understanding of the role of PvDi19s in common bean abiotic stress responses and provide a basis for future genetic enhancements in common bean stress tolerance.
Collapse
Affiliation(s)
- Wei Guo
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, China
| | - Xinhui Li
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Tao Yang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Chunguo Huang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Bo Zhao
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Peng Wang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
2
|
Adewole TS, Dudu BB, Oladele JO, Oyeleke OM, Kuku A. Functional Bioactivities of Soluble Seed Proteins from Two Leguminous Seeds. Prev Nutr Food Sci 2023; 28:160-169. [PMID: 37416787 PMCID: PMC10321450 DOI: 10.3746/pnf.2023.28.2.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 07/08/2023] Open
Abstract
Storage proteins from Sphenostylis stenocarpa and Phaseolus lunatus were fractionated, and their in vitro bioactivities were investigated. Albumin, globulin, prolamin, and glutelin constituents of the respective seeds were successively fractionated using the modified Osborne method. Phenylmethylsulfonyl fluoride (1 mM) was used as a protease inhibitor. The antioxidant, anti-inflammatory, and acetylcholinesterase-inhibitory activities of the protein fractions were evaluated using different appropriate techniques. Globulin was the predominant fraction, with a yield of 43.21±0.01% and 48.19±0.03% for S. stenocarpa and P. lunatus, respectively, whereas prolamin was not detected in both seeds. The protein fraction markedly scavenges hydroxyl radicals, nitric oxide radicals, and 2,2-diphenyl-1-picryldydrazyl radicals with concomitant high free radical-reducing power. Albumin and globulin fractions elicited the highest acetylcholinesterase-inhibitory potential of 48.75% and 49.75%, respectively, indicating their great application potential in managing neurodegenerative diseases. In this study, the albumin, globulin, and glutelin fractions of these underutilized legumes showed great analeptic bioactivities, which could be utilized as health-promoting dietary supplements/products.
Collapse
Affiliation(s)
- Taiwo Scholes Adewole
- Department of Chemical Sciences, Kings University, Ode-Omu, Osun State 220104, Nigeria
| | | | | | | | - Adenike Kuku
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Osun State 220282, Nigeria
| |
Collapse
|
3
|
Li X, Tang Y, Wang L, Chang Y, Wu J, Wang S. QTL mapping and identification of genes associated with the resistance to Acanthoscelides obtectus in cultivated common bean using a high-density genetic linkage map. BMC PLANT BIOLOGY 2022; 22:260. [PMID: 35610573 PMCID: PMC9131570 DOI: 10.1186/s12870-022-03635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is an important agricultural product with large nutritional value, and the insect pest Acanthoscelides obtectus (Say) seriously affects its product quality and commodity quality during storage. Few researches on genes of bruchid resistance have investigated in common bean cultivars. RESULTS In this study, a bruchid-resistant cultivar black kidney bean and a highly susceptible accession Longyundou3 from different gene banks were crossed to construct a recombinant inbred line population. The genetic analysis indicated a quantitative inheritance of the bruchid resistance trait controlled by polygenes. A high-density genetic map of a total map distance of 1283.68 cM with an average interval of 0.61 cM between each marker was constructed using an F6 population of 157 recombinant inbred lines. The map has 3106 bin markers, containing 2,234,769 SNPs. Using the high-density genetic map, a new quantitative trait locus for the resistance to Acanthoscelides obtectus was identified on chromosome 6. New molecular markers based on the candidate region were developed, and this locus was further delimited to an interval of 122.3 kb between SSR markers I6-4 and I6-16 using an F2 population. This region comprised five genes. Phvul.006G003700, which encodes a bifunctional inhibitor, may be a potential candidate gene for bruchid resistance. Sequencing analysis of candidate gene identified a 5 bp insertion-deletion in promoter of gene Phvul.006G003700 between two parents. Expression analysis of candidate gene revealed that the expression level of Phvul.006G003700 in bruchid-resistant parent was markedly higher than that in bruchid-susceptible parent both in dry seeds and leaves. CONCLUSIONS A high-density genetic linkage map was constructed utilizing whole-genome resequencing and one new QTL for bruchid resistance was identified on chromosome 6 in common bean cultivar. Phvul.006G003700 (encoding a bifunctional inhibitor) may be a potential candidate gene. These results may form the basis for further research to reveal the bruchid resistance molecular mechanism of common bean.
Collapse
Affiliation(s)
- Xiaoming Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Sciences, Qujing, 655000, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Joshi J, Renaud JB, Sumarah MW, Marsolais F. Deciphering S-methylcysteine biosynthesis in common bean by isotopic tracking with mass spectrometry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:176-186. [PMID: 31215701 DOI: 10.1111/tpj.14438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The suboptimal content of sulfur-containing amino acids methionine and cysteine prevents common bean (Phaseolus vulgaris) from being an excellent source of protein. Nutritional improvements to this significant crop require a better understanding of the biosynthesis of sulfur-containing compounds including the nonproteogenic amino acid S-methylcysteine and the dipeptide γ-glutamyl-S-methylcysteine, which accumulate in seed. In this study, seeds were incubated with isotopically labelled serine, cysteine or methionine and analyzed by reverse phase chromatography-high resolution mass spectrometry to track stable isotopes as they progressed through the sulfur metabolome. We determined that serine and methionine are the sole precursors of free S-methylcysteine in developing seeds, indicating that this compound is likely to be synthesized through the condensation of O-acetylserine and methanethiol. BSAS4;1, a cytosolic β-substituted alanine synthase preferentially expressed in developing seeds, catalyzed the formation of S-methylcysteine in vitro. A higher flux of labelled serine or cysteine was observed in a sequential pathway involving γ-glutamyl-cysteine, homoglutathione and S-methylhomoglutathione, a likely precursor to γ-glutamyl-S-methylcysteine. Preferential incorporation of serine over cysteine supports a subcellular compartmentation of this pathway, likely to be in the chloroplast. The origin of the methyl group in S-methylhomoglutathione was traced to methionine. There was substantial incorporation of carbons from methionine into the β-alanine portion of homoglutathione and S-methylhomoglutathione, suggesting the breakdown of methionine by methionine γ-lyase and conversion of α-ketobutyrate to β-alanine via propanoate metabolism. These findings delineate the biosynthetic pathways of the sulfur metabolome of common bean and provide an insight that will aid future efforts to improve nutritional quality.
Collapse
Affiliation(s)
- Jaya Joshi
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Justin B Renaud
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Mark W Sumarah
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
5
|
Joshi J, Saboori-Robat E, Solouki M, Mohsenpour M, Marsolais F. Distribution and possible biosynthetic pathway of non-protein sulfur amino acids in legumes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4115-4121. [PMID: 31231767 DOI: 10.1093/jxb/erz291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Some grain legumes store sulfur in the form of non-protein amino acids in seed. γ-Glutamyl-S-methylcysteine is found in Phaseolus and several Vigna species. γ-Glutamyl-S-ethenylcysteine, an antinutritional compound, is present in Vicia narbonensis. In P. vulgaris, free S-methylcysteine levels are higher at early stages of seed development followed by a decline. γ-Glutamyl-S-methylcysteine accumulates later, in two phases, with a lag during reserve accumulation. The concentration of total S-methylcysteine, quantified after acid hydrolysis, is positively regulated by sulfate nutrition. The levels of both γ-glutamyl-S-methylcysteine and γ-glutamyl-S-ethenylcysteine are modulated in response to changes in seed protein composition. A model is proposed whereby the majority of γ-glutamyl-S-methylcysteine in P. vulgaris is synthesized via the intermediate S-methylhomoglutathione. Knowledge of the biosynthesis of non-protein sulfur amino acids is required for metabolic engineering approaches, in conjunction with manipulation of the protein sink, to increase the concentration of nutritionally essential methionine and cysteine. This would improve protein quality of some important legume crops.
Collapse
Affiliation(s)
- Jaya Joshi
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Elham Saboori-Robat
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Motahhareh Mohsenpour
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREO), Karaj, Iran
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Warsame AO, O'Sullivan DM, Tosi P. Seed Storage Proteins of Faba Bean ( Vicia faba L): Current Status and Prospects for Genetic Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12617-12626. [PMID: 30403850 DOI: 10.1021/acs.jafc.8b04992] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Faba bean ( Vicia faba L.) is one of the foremost candidate crops for simultaneously increasing both sustainability and global supply of plant protein. On a dry matter basis, its seeds contain about 29% protein of which more than 80% consists of globulin storage proteins (vicilin and legumin). However, to achieve optimum utilization of this crop for human and animal nutrition, both protein content and quality have to be improved. Though initial investigations on the heritability of these traits indicated the possibility for genetic improvement, little has been achieved so far, partly due to the lack of genetic information coupled with the complex relationship between protein content and grain yield. This review reports on the current knowledge on Vicia faba seed storage proteins, their structure, composition, and genetic control, and highlights key areas for further improvement of the content and composition of Vicia faba seed storage proteins on the basis of recent advances in Vicia faba genome knowledge and genetic tools.
Collapse
Affiliation(s)
- Ahmed O Warsame
- School of Agriculture, Policy and Development, University of Reading , Reading RG6 6AR , United Kingdom
| | - Donal M O'Sullivan
- School of Agriculture, Policy and Development, University of Reading , Reading RG6 6AR , United Kingdom
| | - Paola Tosi
- School of Agriculture, Policy and Development, University of Reading , Reading RG6 6AR , United Kingdom
| |
Collapse
|