1
|
Radhakrishnan A, Yanamala N, Jamthikar A, Wang Y, East SA, Hamirani Y, Maganti K, Sengupta PP. Synthetic generation of cardiac tissue motion from surface electrocardiograms. NATURE CARDIOVASCULAR RESEARCH 2025; 4:445-457. [PMID: 40229468 DOI: 10.1038/s44161-025-00629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Cardiac tissue motion is a sensitive biomarker for detecting early myocardial damage. Here, we show the similarity, interpretability and diagnostic accuracy of synthetic tissue Doppler imaging (TDI) waveforms generated from surface electrocardiograms (ECGs). Prospectively collected ECG and TDI data were cross-matched as 9,144 lateral and 8,722 septal TDI-ECG pairs (463 patients) for generating synthetic TDI across every 1% interval of the cardiac cycle. External validation using 816 lateral and 869 septal TDI-ECG pairs (314 patients) demonstrated strong correlation (repeated-measures r = 0.90, P < 0.0001), cosine similarity (0.89, P < 0.0001) and no differences during a randomized visual Turing test. Synthetic TDI correlated with clinical parameters (585 patients) and detected diastolic and systolic dysfunction with an area under the curve of 0.80 and 0.81, respectively. Furthermore, synthetic TDI systolic and early diastolic measurements generated from an external ECG dataset (233,647 patients) were associated with all-cause mortality during both sinus rhythm and atrial fibrillation, underscoring their potential for personalized cardiac care.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Georgia Institute of Technology, Atlanta, GA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Naveena Yanamala
- Carnegie Mellon University, Pittsburgh, PA, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ankush Jamthikar
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yanting Wang
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sasha-Ann East
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yasmin Hamirani
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | | | | |
Collapse
|
2
|
Sun Y, Wang Y, Gan K, Wang Y, Chen Y, Ge Y, Yuan J, Xu H. Reliable Delineation of Clinical Target Volumes for Cervical Cancer Radiotherapy on CT/MR Dual-Modality Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:575-588. [PMID: 38343225 PMCID: PMC11031539 DOI: 10.1007/s10278-023-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 04/20/2024]
Abstract
Accurate delineation of the clinical target volume (CTV) is a crucial prerequisite for safe and effective radiotherapy characterized. This study addresses the integration of magnetic resonance (MR) images to aid in target delineation on computed tomography (CT) images. However, obtaining MR images directly can be challenging. Therefore, we employ AI-based image generation techniques to "intelligentially generate" MR images from CT images to improve CTV delineation based on CT images. To generate high-quality MR images, we propose an attention-guided single-loop image generation model. The model can yield higher-quality images by introducing an attention mechanism in feature extraction and enhancing the loss function. Based on the generated MR images, we propose a CTV segmentation model fusing multi-scale features through image fusion and a hollow space pyramid module to enhance segmentation accuracy. The image generation model used in this study improves the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) from 14.87 and 0.58 to 16.72 and 0.67, respectively, and improves the feature distribution distance and learning-perception image similarity from 180.86 and 0.28 to 110.98 and 0.22, achieving higher quality image generation. The proposed segmentation method demonstrates high accuracy, compared with the FCN method, the intersection over union ratio and the Dice coefficient are improved from 0.8360 and 0.8998 to 0.9043 and 0.9473, respectively. Hausdorff distance and mean surface distance decreased from 5.5573 mm and 2.3269 mm to 4.7204 mm and 0.9397 mm, respectively, achieving clinically acceptable segmentation accuracy. Our method might reduce physicians' manual workload and accelerate the diagnosis and treatment process while decreasing inter-observer variability in identifying anatomical structures.
Collapse
Affiliation(s)
- Ying Sun
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yuening Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Kexin Gan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yuxin Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Ying Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yun Ge
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Jie Yuan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
| | - Hanzi Xu
- Jiangsu Cancer Hospital, Nanjing, China.
| |
Collapse
|
3
|
Yang X, Chin BB, Silosky M, Wehrend J, Litwiller DV, Ghosh D, Xing F. Learning Without Real Data Annotations to Detect Hepatic Lesions in PET Images. IEEE Trans Biomed Eng 2024; 71:679-688. [PMID: 37708016 DOI: 10.1109/tbme.2023.3315268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Deep neural networks have been recently applied to lesion identification in fluorodeoxyglucose (FDG) positron emission tomography (PET) images, but they typically rely on a large amount of well-annotated data for model training. This is extremely difficult to achieve for neuroendocrine tumors (NETs), because of low incidence of NETs and expensive lesion annotation in PET images. The objective of this study is to design a novel, adaptable deep learning method, which uses no real lesion annotations but instead low-cost, list mode-simulated data, for hepatic lesion detection in real-world clinical NET PET images. METHODS We first propose a region-guided generative adversarial network (RG-GAN) for lesion-preserved image-to-image translation. Then, we design a specific data augmentation module for our list-mode simulated data and incorporate this module into the RG-GAN to improve model training. Finally, we combine the RG-GAN, the data augmentation module and a lesion detection neural network into a unified framework for joint-task learning to adaptatively identify lesions in real-world PET data. RESULTS The proposed method outperforms recent state-of-the-art lesion detection methods in real clinical 68Ga-DOTATATE PET images, and produces very competitive performance with the target model that is trained with real lesion annotations. CONCLUSION With RG-GAN modeling and specific data augmentation, we can obtain good lesion detection performance without using any real data annotations. SIGNIFICANCE This study introduces an adaptable deep learning method for hepatic lesion identification in NETs, which can significantly reduce human effort for data annotation and improve model generalizability for lesion detection with PET imaging.
Collapse
|
4
|
Ozbey M, Dalmaz O, Dar SUH, Bedel HA, Ozturk S, Gungor A, Cukur T. Unsupervised Medical Image Translation With Adversarial Diffusion Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3524-3539. [PMID: 37379177 DOI: 10.1109/tmi.2023.3290149] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols. A pervasive approach for synthesizing target images involves one-shot mapping through generative adversarial networks (GAN). Yet, GAN models that implicitly characterize the image distribution can suffer from limited sample fidelity. Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation. To capture a direct correlate of the image distribution, SynDiff leverages a conditional diffusion process that progressively maps noise and source images onto the target image. For fast and accurate image sampling during inference, large diffusion steps are taken with adversarial projections in the reverse diffusion direction. To enable training on unpaired datasets, a cycle-consistent architecture is devised with coupled diffusive and non-diffusive modules that bilaterally translate between two modalities. Extensive assessments are reported on the utility of SynDiff against competing GAN and diffusion models in multi-contrast MRI and MRI-CT translation. Our demonstrations indicate that SynDiff offers quantitatively and qualitatively superior performance against competing baselines.
Collapse
|
5
|
Saha PK, Nadeem SA, Comellas AP. A Survey on Artificial Intelligence in Pulmonary Imaging. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2023; 13:e1510. [PMID: 38249785 PMCID: PMC10796150 DOI: 10.1002/widm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 01/23/2024]
Abstract
Over the last decade, deep learning (DL) has contributed a paradigm shift in computer vision and image recognition creating widespread opportunities of using artificial intelligence in research as well as industrial applications. DL has been extensively studied in medical imaging applications, including those related to pulmonary diseases. Chronic obstructive pulmonary disease, asthma, lung cancer, pneumonia, and, more recently, COVID-19 are common lung diseases affecting nearly 7.4% of world population. Pulmonary imaging has been widely investigated toward improving our understanding of disease etiologies and early diagnosis and assessment of disease progression and clinical outcomes. DL has been broadly applied to solve various pulmonary image processing challenges including classification, recognition, registration, and segmentation. This paper presents a survey of pulmonary diseases, roles of imaging in translational and clinical pulmonary research, and applications of different DL architectures and methods in pulmonary imaging with emphasis on DL-based segmentation of major pulmonary anatomies such as lung volumes, lung lobes, pulmonary vessels, and airways as well as thoracic musculoskeletal anatomies related to pulmonary diseases.
Collapse
Affiliation(s)
- Punam K Saha
- Departments of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242
| | | | | |
Collapse
|
6
|
Chen X, Pang Y, Ahmad S, Royce T, Wang A, Lian J, Yap PT. Organ-aware CBCT enhancement via dual path learning for prostate cancer treatment. Med Phys 2023; 50:6931-6942. [PMID: 37751497 PMCID: PMC11132970 DOI: 10.1002/mp.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Cone-beam computed tomography (CBCT) plays a crucial role in the intensity modulated radiotherapy (IMRT) of prostate cancer. However, poor image contrast and fuzzy organ boundaries pose challenges to precise targeting for dose delivery and plan reoptimization for adaptive therapy. PURPOSE In this work, we aim to enhance pelvic CBCT images by translating them to high-quality CT images with a particular focus on the anatomical structures important for radiotherapy. METHODS We develop a novel dual-path learning framework, covering both global and local information, for organ-aware enhancement of the prostate, bladder and rectum. The global path learns coarse inter-modality translation at the image level. The local path learns organ-aware translation at the regional level. This dual-path learning architecture can serve as a plug-and-play module adaptable to other medical image-to-image translation frameworks. RESULTS We evaluated the performance of the proposed method both quantitatively and qualitatively. The training dataset consists of unpaired 40 CBCT and 40 CT scans, the validation dataset consists of 5 paired CBCT-CT scans, and the testing dataset consists of 10 paired CBCT-CT scans. The peak signal-to-noise ratio (PSNR) between enhanced CBCT and reference CT images is 27.22 ± 1.79, and the structural similarity (SSIM) between enhanced CBCT and the reference CT images is 0.71 ± 0.03. We also compared our method with state-of-the-art image-to-image translation methods, where our method achieves the best performance. Moreover, the statistical analysis confirms that the improvements achieved by our method are statistically significant. CONCLUSIONS The proposed method demonstrates its superiority in enhancing pelvic CBCT images, especially at the organ level, compared to relevant methods.
Collapse
Affiliation(s)
- Xu Chen
- College of Computer Science and Technology, Huaqiao University, Xiamen, China
- Key Laboratory of Computer Vision and Machine Learning (Huaqiao University), Fujian Province University, Xiamen, China
- Xiamen Key Laboratory of Computer Vision and Pattern Recognition, Huaqiao University, Xiamen, China
| | - Yunkui Pang
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Trevor Royce
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Andrew Wang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jun Lian
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Jeong J, Wentland A, Mastrodicasa D, Fananapazir G, Wang A, Banerjee I, Patel BN. Synthetic dual-energy CT reconstruction from single-energy CT Using artificial intelligence. Abdom Radiol (NY) 2023; 48:3537-3549. [PMID: 37665385 DOI: 10.1007/s00261-023-04004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To develop and assess the utility of synthetic dual-energy CT (sDECT) images generated from single-energy CT (SECT) using two state-of-the-art generative adversarial network (GAN) architectures for artificial intelligence-based image translation. METHODS In this retrospective study, 734 patients (389F; 62.8 years ± 14.9) who underwent enhanced DECT of the chest, abdomen, and pelvis between January 2018 and June 2019 were included. Using 70-keV as the input images (n = 141,009) and 50-keV, iodine, and virtual unenhanced (VUE) images as outputs, separate models were trained using Pix2PixHD and CycleGAN. Model performance on the test set (n = 17,839) was evaluated using mean squared error, structural similarity index, and peak signal-to-noise ratio. To objectively test the utility of these models, synthetic iodine material density and 50-keV images were generated from SECT images of 16 patients with gastrointestinal bleeding performed at another institution. The conspicuity of gastrointestinal bleeding using sDECT was compared to portal venous phase SECT. Synthetic VUE images were generated from 37 patients who underwent a CT urogram at another institution and model performance was compared to true unenhanced images. RESULTS sDECT from both Pix2PixHD and CycleGAN were qualitatively indistinguishable from true DECT by a board-certified radiologist (avg accuracy 64.5%). Pix2PixHD had better quantitative performance compared to CycleGAN (e.g., structural similarity index for iodine: 87% vs. 46%, p-value < 0.001). sDECT using Pix2PixHD showed increased bleeding conspicuity for gastrointestinal bleeding and better removal of iodine on synthetic VUE compared to CycleGAN. CONCLUSIONS sDECT from SECT using Pix2PixHD may afford some of the advantages of DECT.
Collapse
Affiliation(s)
- Jiwoong Jeong
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
- School of Computing and Augmented Intelligence, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Andrew Wentland
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Domenico Mastrodicasa
- Department of Radiology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Ghaneh Fananapazir
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA, 95817, USA
| | - Adam Wang
- Department of Radiology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Imon Banerjee
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Bhavik N Patel
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| |
Collapse
|
8
|
Zhang A, Wu Z, Wu E, Wu M, Snyder MP, Zou J, Wu JC. Leveraging physiology and artificial intelligence to deliver advancements in health care. Physiol Rev 2023; 103:2423-2450. [PMID: 37104717 PMCID: PMC10390055 DOI: 10.1152/physrev.00033.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
Artificial intelligence in health care has experienced remarkable innovation and progress in the last decade. Significant advancements can be attributed to the utilization of artificial intelligence to transform physiology data to advance health care. In this review, we explore how past work has shaped the field and defined future challenges and directions. In particular, we focus on three areas of development. First, we give an overview of artificial intelligence, with special attention to the most relevant artificial intelligence models. We then detail how physiology data have been harnessed by artificial intelligence to advance the main areas of health care: automating existing health care tasks, increasing access to care, and augmenting health care capabilities. Finally, we discuss emerging concerns surrounding the use of individual physiology data and detail an increasingly important consideration for the field, namely the challenges of deploying artificial intelligence models to achieve meaningful clinical impact.
Collapse
Affiliation(s)
- Angela Zhang
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
| | - Zhenqin Wu
- Department of Chemistry, Stanford University, Stanford, California, United States
| | - Eric Wu
- Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Matthew Wu
- Greenstone Biosciences, Palo Alto, California, United States
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
| | - James Zou
- Department of Biomedical Informatics, School of Medicine, Stanford University, Stanford, California, United States
- Department of Computer Science, Stanford University, Stanford, California, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, United States
| |
Collapse
|
9
|
Lauenburg L, Lin Z, Zhang R, Santos MD, Huang S, Arganda-Carreras I, Boyden ES, Pfister H, Wei D. 3D Domain Adaptive Instance Segmentation via Cyclic Segmentation GANs. IEEE J Biomed Health Inform 2023; 27:4018-4027. [PMID: 37252868 PMCID: PMC10481620 DOI: 10.1109/jbhi.2023.3281332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
3D instance segmentation for unlabeled imaging modalities is a challenging but essential task as collecting expert annotation can be expensive and time-consuming. Existing works segment a new modality by either deploying pre-trained models optimized on diverse training data or sequentially conducting image translation and segmentation with two relatively independent networks. In this work, we propose a novel Cyclic Segmentation Generative Adversarial Network (CySGAN) that conducts image translation and instance segmentation simultaneously using a unified network with weight sharing. Since the image translation layer can be removed at inference time, our proposed model does not introduce additional computational cost upon a standard segmentation model. For optimizing CySGAN, besides the CycleGAN losses for image translation and supervised losses for the annotated source domain, we also utilize self-supervised and segmentation-based adversarial objectives to enhance the model performance by leveraging unlabeled target domain images. We benchmark our approach on the task of 3D neuronal nuclei segmentation with annotated electron microscopy (EM) images and unlabeled expansion microscopy (ExM) data. The proposed CySGAN outperforms pre-trained generalist models, feature-level domain adaptation models, and the baselines that conduct image translation and segmentation sequentially. Our implementation and the newly collected, densely annotated ExM zebrafish brain nuclei dataset, named NucExM, are publicly available at https://connectomics-bazaar.github.io/proj/CySGAN/index.html.
Collapse
|
10
|
Jin D, Zheng H, Yuan H. Exploring the Possibility of Measuring Vertebrae Bone Structure Metrics Using MDCT Images: An Unpaired Image-to-Image Translation Method. Bioengineering (Basel) 2023; 10:716. [PMID: 37370647 DOI: 10.3390/bioengineering10060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Bone structure metrics are vital for the evaluation of vertebral bone strength. However, the gold standard for measuring bone structure metrics, micro-Computed Tomography (micro-CT), cannot be used in vivo, which hinders the early diagnosis of fragility fractures. This paper used an unpaired image-to-image translation method to capture the mapping between clinical multidetector computed tomography (MDCT) and micro-CT images and then generated micro-CT-like images to measure bone structure metrics. MDCT and micro-CT images were scanned from 75 human lumbar spine specimens and formed training and testing sets. The generator in the model focused on learning both the structure and detailed pattern of bone trabeculae and generating micro-CT-like images, and the discriminator determined whether the generated images were micro-CT images or not. Based on similarity metrics (i.e., SSIM and FID) and bone structure metrics (i.e., bone volume fraction, trabecular separation and trabecular thickness), a set of comparisons were performed. The results show that the proposed method can perform better in terms of both similarity metrics and bone structure metrics and the improvement is statistically significant. In particular, we compared the proposed method with the paired image-to-image method and analyzed the pros and cons of the method used.
Collapse
Affiliation(s)
- Dan Jin
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Han Zheng
- School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
11
|
Kebaili A, Lapuyade-Lahorgue J, Ruan S. Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. J Imaging 2023; 9:81. [PMID: 37103232 PMCID: PMC10144738 DOI: 10.3390/jimaging9040081] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.
Collapse
Affiliation(s)
| | | | - Su Ruan
- Université Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France
| |
Collapse
|
12
|
Zhao Z, Zhou F, Xu K, Zeng Z, Guan C, Zhou SK. LE-UDA: Label-Efficient Unsupervised Domain Adaptation for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:633-646. [PMID: 36227829 DOI: 10.1109/tmi.2022.3214766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation (UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called "Label-Efficient Unsupervised Domain Adaptation" (LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature.
Collapse
|
13
|
Hasan SMK, Linte CA. Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning. APPLIED SCIENCES (BASEL, SWITZERLAND) 2022; 12:12163. [PMID: 37125242 PMCID: PMC10134910 DOI: 10.3390/app122312163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Learning good data representations for medical imaging tasks ensures the preservation of relevant information and the removal of irrelevant information from the data to improve the interpretability of the learned features. In this paper, we propose a semi-supervised model-namely, combine-all in semi-supervised learning (CqSL)-to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two important tasks in medical imaging: segmentation and reconstruction. Our work is motivated by the recent progress in image segmentation using semi-supervised learning (SSL), which has shown good results with limited labeled data and large amounts of unlabeled data. A disentanglement block decomposes an input image into a domain-invariant spatial factor and a domain-specific non-spatial factor. We assume that medical images acquired using multiple scanners (different domain information) share a common spatial space but differ in non-spatial space (intensities, contrast, etc.). Hence, we utilize our spatial information to generate segmentation masks from unlabeled datasets using a generative adversarial network (GAN). Finally, to reconstruct the original image, our conditioning layer-based reconstruction block recombines spatial information with random non-spatial information sampled from the generative models. Our ablation study demonstrates the benefits of disentanglement in holding domain-invariant (spatial) as well as domain-specific (non-spatial) information with high accuracy. We further apply a structured L 2 similarity ( S L 2 SIM ) loss along with a mutual information minimizer (MIM) to improve the adversarially trained generative models for better reconstruction. Experimental results achieved on the STACOM 2017 ACDC cine cardiac magnetic resonance (MR) dataset suggest that our proposed (CqSL) model outperforms fully supervised and semi-supervised models, achieving an 83.2% performance accuracy even when using only 1% labeled data. We hypothesize that our proposed model has the potential to become an efficient semantic segmentation tool that may be used for domain adaptation in data-limited medical imaging scenarios, where annotations are expensive. Code, and experimental configurations will be made available publicly.
Collapse
Affiliation(s)
- S. M. Kamrul Hasan
- Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA
- Correspondence:
| | - Cristian A. Linte
- Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
14
|
Zhang A, Xing L, Zou J, Wu JC. Shifting machine learning for healthcare from development to deployment and from models to data. Nat Biomed Eng 2022; 6:1330-1345. [PMID: 35788685 DOI: 10.1038/s41551-022-00898-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/03/2022] [Indexed: 01/14/2023]
Abstract
In the past decade, the application of machine learning (ML) to healthcare has helped drive the automation of physician tasks as well as enhancements in clinical capabilities and access to care. This progress has emphasized that, from model development to model deployment, data play central roles. In this Review, we provide a data-centric view of the innovations and challenges that are defining ML for healthcare. We discuss deep generative models and federated learning as strategies to augment datasets for improved model performance, as well as the use of the more recent transformer models for handling larger datasets and enhancing the modelling of clinical text. We also discuss data-focused problems in the deployment of ML, emphasizing the need to efficiently deliver data to ML models for timely clinical predictions and to account for natural data shifts that can deteriorate model performance.
Collapse
Affiliation(s)
- Angela Zhang
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA. .,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA. .,Greenstone Biosciences, Palo Alto, CA, USA. .,Department of Computer Science, Stanford University, Stanford, CA, USA.
| | - Lei Xing
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Department of Biomedical Informatics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA. .,Greenstone Biosciences, Palo Alto, CA, USA. .,Departments of Medicine, Division of Cardiovascular Medicine Stanford University, Stanford, CA, USA. .,Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Dalmaz O, Yurt M, Cukur T. ResViT: Residual Vision Transformers for Multimodal Medical Image Synthesis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2598-2614. [PMID: 35436184 DOI: 10.1109/tmi.2022.3167808] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Generative adversarial models with convolutional neural network (CNN) backbones have recently been established as state-of-the-art in numerous medical image synthesis tasks. However, CNNs are designed to perform local processing with compact filters, and this inductive bias compromises learning of contextual features. Here, we propose a novel generative adversarial approach for medical image synthesis, ResViT, that leverages the contextual sensitivity of vision transformers along with the precision of convolution operators and realism of adversarial learning. ResViT's generator employs a central bottleneck comprising novel aggregated residual transformer (ART) blocks that synergistically combine residual convolutional and transformer modules. Residual connections in ART blocks promote diversity in captured representations, while a channel compression module distills task-relevant information. A weight sharing strategy is introduced among ART blocks to mitigate computational burden. A unified implementation is introduced to avoid the need to rebuild separate synthesis models for varying source-target modality configurations. Comprehensive demonstrations are performed for synthesizing missing sequences in multi-contrast MRI, and CT images from MRI. Our results indicate superiority of ResViT against competing CNN- and transformer-based methods in terms of qualitative observations and quantitative metrics.
Collapse
|
16
|
Reaungamornrat S, Sari H, Catana C, Kamen A. Multimodal image synthesis based on disentanglement representations of anatomical and modality specific features, learned using uncooperative relativistic GAN. Med Image Anal 2022; 80:102514. [PMID: 35717874 PMCID: PMC9810205 DOI: 10.1016/j.media.2022.102514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 01/05/2023]
Abstract
Growing number of methods for attenuation-coefficient map estimation from magnetic resonance (MR) images have recently been proposed because of the increasing interest in MR-guided radiotherapy and the introduction of positron emission tomography (PET) MR hybrid systems. We propose a deep-network ensemble incorporating stochastic-binary-anatomical encoders and imaging-modality variational autoencoders, to disentangle image-latent spaces into a space of modality-invariant anatomical features and spaces of modality attributes. The ensemble integrates modality-modulated decoders to normalize features and image intensities based on imaging modality. Besides promoting disentanglement, the architecture fosters uncooperative learning, offering ability to maintain anatomical structure in a cross-modality reconstruction. Introduction of a modality-invariant structural consistency constraint further enforces faithful embedding of anatomy. To improve training stability and fidelity of synthesized modalities, the ensemble is trained in a relativistic generative adversarial framework incorporating multiscale discriminators. Analyses of priors and network architectures as well as performance validation were performed on computed tomography (CT) and MR pelvis datasets. The proposed method demonstrated robustness against intensity inhomogeneity, improved tissue-class differentiation, and offered synthetic CT in Hounsfield units with intensities consistent and smooth across slices compared to the state-of-the-art approaches, offering median normalized mutual information of 1.28, normalized cross correlation of 0.97, and gradient cross correlation of 0.59 over 324 images.
Collapse
Affiliation(s)
| | - Hasan Sari
- Havard Medical School, Boston, MA 02115 USA
| | | | - Ali Kamen
- Siemens Healthineers, Digital Technology and Innovation, Princeton, NJ 08540 USA
| |
Collapse
|
17
|
Sample-Efficient Deep Learning Techniques for Burn Severity Assessment with Limited Data Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The automatic analysis of medical data and images to help diagnosis has recently become a major area in the application of deep learning. In general, deep learning techniques can be effective when a large high-quality dataset is available for model training. Thus, there is a need for sample-efficient learning techniques, particularly in the field of medical image analysis, as significant cost and effort are required to obtain a sufficient number of well-annotated high-quality training samples. In this paper, we address the problem of deep neural network training under sample deficiency by investigating several sample-efficient deep learning techniques. We concentrate on applying these techniques to skin burn image analysis and classification. We first build a large-scale, professionally annotated dataset of skin burn images, which enables the establishment of convolutional neural network (CNN) models for burn severity assessment with high accuracy. We then deliberately set data limitation conditions and adapt several sample-efficient techniques, such as transferable learning (TL), self-supervised learning (SSL), federated learning (FL), and generative adversarial network (GAN)-based data augmentation, to those conditions. Through comprehensive experimentation, we evaluate the sample-efficient deep learning techniques for burn severity assessment, and show, in particular, that SSL models learned on a small task-specific dataset can achieve comparable accuracy to a baseline model learned on a six-times larger dataset. We also demonstrate the applicability of FL and GANs to model training under different data limitation conditions that commonly occur in the area of healthcare and medicine where deep learning models are adopted.
Collapse
|
18
|
FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN). SENSORS 2022; 22:s22124640. [PMID: 35746422 PMCID: PMC9227640 DOI: 10.3390/s22124640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN).
Collapse
|
19
|
Li X, Jiang Y, Rodriguez-Andina JJ, Luo H, Yin S, Kaynak O. When medical images meet generative adversarial network: recent development and research opportunities. DISCOVER ARTIFICIAL INTELLIGENCE 2021; 1:5. [DOI: 10.1007/s44163-021-00006-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
AbstractDeep learning techniques have promoted the rise of artificial intelligence (AI) and performed well in computer vision. Medical image analysis is an important application of deep learning, which is expected to greatly reduce the workload of doctors, contributing to more sustainable health systems. However, most current AI methods for medical image analysis are based on supervised learning, which requires a lot of annotated data. The number of medical images available is usually small and the acquisition of medical image annotations is an expensive process. Generative adversarial network (GAN), an unsupervised method that has become very popular in recent years, can simulate the distribution of real data and reconstruct approximate real data. GAN opens some exciting new ways for medical image generation, expanding the number of medical images available for deep learning methods. Generated data can solve the problem of insufficient data or imbalanced data categories. Adversarial training is another contribution of GAN to medical imaging that has been applied to many tasks, such as classification, segmentation, or detection. This paper investigates the research status of GAN in medical images and analyzes several GAN methods commonly applied in this area. The study addresses GAN application for both medical image synthesis and adversarial learning for other medical image tasks. The open challenges and future research directions are also discussed.
Collapse
|
20
|
Guo P, Wang P, Yasarla R, Zhou J, Patel VM, Jiang S. Anatomic and Molecular MR Image Synthesis Using Confidence Guided CNNs. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2832-2844. [PMID: 33351754 PMCID: PMC8543492 DOI: 10.1109/tmi.2020.3046460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Data-driven automatic approaches have demonstrated their great potential in resolving various clinical diagnostic dilemmas in neuro-oncology, especially with the help of standard anatomic and advanced molecular MR images. However, data quantity and quality remain a key determinant, and a significant limit of the potential applications. In our previous work, we explored the synthesis of anatomic and molecular MR image networks (SAMR) in patients with post-treatment malignant gliomas. In this work, we extend this through a confidence-guided SAMR (CG-SAMR) that synthesizes data from lesion contour information to multi-modal MR images, including T1-weighted ( [Formula: see text]), gadolinium enhanced [Formula: see text] (Gd- [Formula: see text]), T2-weighted ( [Formula: see text]), and fluid-attenuated inversion recovery ( FLAIR ), as well as the molecular amide proton transfer-weighted ( [Formula: see text]) sequence. We introduce a module that guides the synthesis based on a confidence measure of the intermediate results. Furthermore, we extend the proposed architecture to allow training using unpaired data. Extensive experiments on real clinical data demonstrate that the proposed model can perform better than current the state-of-the-art synthesis methods. Our code is available at https://github.com/guopengf/CG-SAMR.
Collapse
|
21
|
Xing F, Cornish TC, Bennett TD, Ghosh D. Bidirectional Mapping-Based Domain Adaptation for Nucleus Detection in Cross-Modality Microscopy Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2880-2896. [PMID: 33284750 PMCID: PMC8543886 DOI: 10.1109/tmi.2020.3042789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell or nucleus detection is a fundamental task in microscopy image analysis and has recently achieved state-of-the-art performance by using deep neural networks. However, training supervised deep models such as convolutional neural networks (CNNs) usually requires sufficient annotated image data, which is prohibitively expensive or unavailable in some applications. Additionally, when applying a CNN to new datasets, it is common to annotate individual cells/nuclei in those target datasets for model re-learning, leading to inefficient and low-throughput image analysis. To tackle these problems, we present a bidirectional, adversarial domain adaptation method for nucleus detection on cross-modality microscopy image data. Specifically, the method learns a deep regression model for individual nucleus detection with both source-to-target and target-to-source image translation. In addition, we explicitly extend this unsupervised domain adaptation method to a semi-supervised learning situation and further boost the nucleus detection performance. We evaluate the proposed method on three cross-modality microscopy image datasets, which cover a wide variety of microscopy imaging protocols or modalities, and obtain a significant improvement in nucleus detection compared to reference baseline approaches. In addition, our semi-supervised method is very competitive with recent fully supervised learning models trained with all real target training labels.
Collapse
|
22
|
Lee D, Jeong SW, Kim SJ, Cho H, Park W, Han Y. Improvement of megavoltage computed tomography image quality for adaptive helical tomotherapy using cycleGAN-based image synthesis with small datasets. Med Phys 2021; 48:5593-5610. [PMID: 34418109 DOI: 10.1002/mp.15182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Megavoltage computed tomography (MVCT) offers an opportunity for adaptive helical tomotherapy. However, high noise and reduced contrast in the MVCT images due to a decrease in the imaging dose to patients limits its usability. Therefore, we propose an algorithm to improve the image quality of MVCT. METHODS The proposed algorithm generates kilovoltage CT (kVCT)-like images from MVCT images using a cycle-consistency generative adversarial network (cycleGAN)-based image synthesis model. Data augmentation using an affine transformation was applied to the training data to overcome the lack of data diversity in the network training. The mean absolute error (MAE), root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) were used to quantify the correction accuracy of the images generated by the proposed algorithm. The proposed method was validated by comparing the images generated with those obtained from conventional and deep learning-based image processing method through non-augmented datasets. RESULTS The average MAE, RMSE, PSNR, and SSIM values were 18.91 HU, 69.35 HU, 32.73 dB, and 95.48 using the proposed method, respectively, whereas cycleGAN with non-augmented data showed inferior results (19.88 HU, 70.55 HU, 32.62 dB, 95.19, respectively). The voxel values of the image obtained by the proposed method also indicated similar distributions to those of the kVCT image. The dose-volume histogram of the proposed method was also similar to that of electron density corrected MVCT. CONCLUSIONS The proposed algorithm generates synthetic kVCT images from MVCT images using cycleGAN with small patient datasets. The image quality achieved by the proposed method was correspondingly improved to the level of a kVCT image while maintaining the anatomical structure of an MVCT image. The evaluation of dosimetric effectiveness of the proposed method indicates the applicability of accurate treatment planning in adaptive radiation therapy.
Collapse
Affiliation(s)
- Dongyeon Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea.,Department of Radiation Oncology, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Woon Jeong
- Department of Health Sciences and Technology, SAIHST,Sungkyunkwan University, Seoul, Republic of Korea.,Department of Radiation Oncology, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Jin Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyosung Cho
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Won Park
- Department of Health Sciences and Technology, SAIHST,Sungkyunkwan University, Seoul, Republic of Korea.,Department of Radiation Oncology, Samsung Medical Center, Seoul, Republic of Korea
| | - Youngyih Han
- Department of Health Sciences and Technology, SAIHST,Sungkyunkwan University, Seoul, Republic of Korea.,Department of Radiation Oncology, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
23
|
Liu H, Nai YH, Saridin F, Tanaka T, O' Doherty J, Hilal S, Gyanwali B, Chen CP, Robins EG, Reilhac A. Improved amyloid burden quantification with nonspecific estimates using deep learning. Eur J Nucl Med Mol Imaging 2021; 48:1842-1853. [PMID: 33415430 PMCID: PMC8113180 DOI: 10.1007/s00259-020-05131-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Standardized uptake value ratio (SUVr) used to quantify amyloid-β burden from amyloid-PET scans can be biased by variations in the tracer's nonspecific (NS) binding caused by the presence of cerebrovascular disease (CeVD). In this work, we propose a novel amyloid-PET quantification approach that harnesses the intermodal image translation capability of convolutional networks to remove this undesirable source of variability. METHODS Paired MR and PET images exhibiting very low specific uptake were selected from a Singaporean amyloid-PET study involving 172 participants with different severities of CeVD. Two convolutional neural networks (CNN), ScaleNet and HighRes3DNet, and one conditional generative adversarial network (cGAN) were trained to map structural MR to NS PET images. NS estimates generated for all subjects using the most promising network were then subtracted from SUVr images to determine specific amyloid load only (SAβL). Associations of SAβL with various cognitive and functional test scores were then computed and compared to results using conventional SUVr. RESULTS Multimodal ScaleNet outperformed other networks in predicting the NS content in cortical gray matter with a mean relative error below 2%. Compared to SUVr, SAβL showed increased association with cognitive and functional test scores by up to 67%. CONCLUSION Removing the undesirable NS uptake from the amyloid load measurement is possible using deep learning and substantially improves its accuracy. This novel analysis approach opens a new window of opportunity for improved data modeling in Alzheimer's disease and for other neurodegenerative diseases that utilize PET imaging.
Collapse
Affiliation(s)
- Haohui Liu
- Raffles Institution, Singapore, Singapore
| | - Ying-Hwey Nai
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore.
| | - Francis Saridin
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jim O' Doherty
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Bibek Gyanwali
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Edward G Robins
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
- Singapore BioImaging Consortium (SBIC), Agency for Science, Technology and Research (A*Star), Singapore, Singapore
| | - Anthonin Reilhac
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
| |
Collapse
|
24
|
Wolterink JM, Mukhopadhyay A, Leiner T, Vogl TJ, Bucher AM, Išgum I. Generative Adversarial Networks: A Primer for Radiologists. Radiographics 2021; 41:840-857. [PMID: 33891522 DOI: 10.1148/rg.2021200151] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Artificial intelligence techniques involving the use of artificial neural networks-that is, deep learning techniques-are expected to have a major effect on radiology. Some of the most exciting applications of deep learning in radiology make use of generative adversarial networks (GANs). GANs consist of two artificial neural networks that are jointly optimized but with opposing goals. One neural network, the generator, aims to synthesize images that cannot be distinguished from real images. The second neural network, the discriminator, aims to distinguish these synthetic images from real images. These deep learning models allow, among other applications, the synthesis of new images, acceleration of image acquisitions, reduction of imaging artifacts, efficient and accurate conversion between medical images acquired with different modalities, and identification of abnormalities depicted on images. The authors provide an introduction to GANs and adversarial deep learning methods. In addition, the different ways in which GANs can be used for image synthesis and image-to-image translation tasks, as well as the principles underlying conditional GANs and cycle-consistent GANs, are described. Illustrated examples of GAN applications in radiologic image analysis for different imaging modalities and different tasks are provided. The clinical potential of GANs, future clinical GAN applications, and potential pitfalls and caveats that radiologists should be aware of also are discussed in this review. The online slide presentation from the RSNA Annual Meeting is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Jelmer M Wolterink
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Anirban Mukhopadhyay
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Tim Leiner
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Thomas J Vogl
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Andreas M Bucher
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| | - Ivana Išgum
- From the Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, Technical Medical Centre, University of Twente, Zilverling, PO Box 217, 7500 AE Enschede, the Netherlands (J.M.W.); Department of Biomedical Engineering and Physics (J.M.W., I.I.) and Department of Radiology and Nuclear Medicine (I.I.), Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Informatics, Technische Universität Darmstadt, Darmstadt, Germany (A.M.); Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands (T.L.); and Institute of Diagnostic and Interventional Radiology, Universitätsklinikum Frankfurt, Frankfurt, Germany (T.J.V., A.M.B.)
| |
Collapse
|
25
|
Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images. BIOMED RESEARCH INTERNATIONAL 2021; 2020:5193707. [PMID: 33204701 PMCID: PMC7661122 DOI: 10.1155/2020/5193707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022]
Abstract
Cross-modality medical image synthesis between magnetic resonance (MR) images and computed tomography (CT) images has attracted increasing attention in many medical imaging area. Many deep learning methods have been used to generate pseudo-MR/CT images from counterpart modality images. In this study, we used U-Net and Cycle-Consistent Adversarial Networks (CycleGAN), which were typical networks of supervised and unsupervised deep learning methods, respectively, to transform MR/CT images to their counterpart modality. Experimental results show that synthetic images predicted by the proposed U-Net method got lower mean absolute error (MAE), higher structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) in both directions of CT/MR synthesis, especially in synthetic CT image generation. Though synthetic images by the U-Net method has less contrast information than those by the CycleGAN method, the pixel value profile tendency of the synthetic images by the U-Net method is closer to the ground truth images. This work demonstrated that supervised deep learning method outperforms unsupervised deep learning method in accuracy for medical tasks of MR/CT synthesis.
Collapse
|
26
|
Huang L, Li M, Gou S, Zhang X, Jiang K. Automated Segmentation Method for Low Field 3D Stomach MRI Using Transferred Learning Image Enhancement Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6679603. [PMID: 33628806 PMCID: PMC7892230 DOI: 10.1155/2021/6679603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Accurate segmentation of abdominal organs has always been a difficult problem, especially for organs with cavities. And MRI-guided radiotherapy is particularly attractive for abdominal targets compared with low CT contrast. But in the limit of radiotherapy environment, only low field MRI segmentation can be used for stomach location, tracking, and treatment planning. In clinical applications, the existing 3D segmentation network model is trained by the low field MRI, and the segmentation result cannot be used in radiotherapy plan since the bad segmentation performance. Another way is that historical high field intensity MR images are directly used for data expansion to network learning; there will be a domain shift problem. How to use different domain images to improve the segmentation accuracy of deep neural network? A 3D low field MRI stomach segmentation method based on transfer learning image enhancement is proposed in this paper. In this method, Cycle Generative Adversarial Network (CycleGAN) is used to construct and learn the mapping relationship between high and low field intensity MRI and to overcome domain shift. Then, the image generated by the high field intensity MRI through the CycleGAN network is with transferred information as the extended data. The low field MRI combines these extended datasets to form the training data for training the 3D Res-Unet segmentation network. Furthermore, the convolution layer, batch normalization layer, and Relu layer together were replaced with a residual module to relieve the gradient disappearance of the neural network. The experimental results show that the Dice coefficient is 2.5 percent better than the baseline method. The over segmentation and under segmentation are reduced by 0.7 and 5.5 percent, respectively. And the sensitivity is improved by 6.4 percent.
Collapse
Affiliation(s)
- Luguang Huang
- Xijing Hospital of the Fourth Military Medical University, Xian, Shaanxi, China
| | - Mengbin Li
- Xijing Hospital of the Fourth Military Medical University, Xian, Shaanxi, China
| | - Shuiping Gou
- School of Artificial Intelligent, Xidian University, Xian, Shaanxi, China
- Intelligent Medical Imaging Big Data Frontier Research Center, Xidian University, Xian, Shaanxi, China
| | - Xiaopeng Zhang
- School of Artificial Intelligent, Xidian University, Xian, Shaanxi, China
| | - Kun Jiang
- Xijing Hospital of the Fourth Military Medical University, Xian, Shaanxi, China
| |
Collapse
|
27
|
Yang T, Cui X, Bai X, Li L, Gong Y. RA-SIFA: Unsupervised domain adaptation multi-modality cardiac segmentation network combining parallel attention module and residual attention unit. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:1065-1078. [PMID: 34719432 DOI: 10.3233/xst-210966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Convolutional neural network has achieved a profound effect on cardiac image segmentation. The diversity of medical imaging equipment brings the challenge of domain shift for cardiac image segmentation. OBJECTIVE In order to solve the domain shift existed in multi-modality cardiac image segmentation, this study aims to investigate and test an unsupervised domain adaptation network RA-SIFA, which combines a parallel attention module (PAM) and residual attention unit (RAU). METHODS First, the PAM is introduced in the generator of RA-SIFA to fuse global information, which can reduce the domain shift from the respect of image alignment. Second, the shared encoder adopts the RAU, which has residual block based on the spatial attention module to alleviate the problem that the convolution layer is insensitive to spatial position. Therefore, RAU enables to further reduce the domain shift from the respect of feature alignment. RA-SIFA model can realize the unsupervised domain adaption (UDA) through combining the image and feature alignment, and then solve the domain shift of cardiac image segmentation in a complementary manner. RESULTS The model is evaluated using MM-WHS2017 datasets. Compared with SIFA, the Dice of our new RA-SIFA network is improved by 8.4%and 3.2%in CT and MR images, respectively, while, the average symmetric surface distance (ASD) is reduced by 3.4 and 0.8mm in CT and MR images, respectively. CONCLUSION The study results demonstrate that our new RA-SIFA network can effectively improve the accuracy of whole-heart segmentation from CT and MR images.
Collapse
Affiliation(s)
- Tiejun Yang
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou, China
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
| | - Xiaojuan Cui
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xinhao Bai
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Lei Li
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
| | - Yuehong Gong
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
28
|
Chen X, Lian C, Wang L, Deng H, Kuang T, Fung S, Gateno J, Yap PT, Xia JJ, Shen D. Anatomy-Regularized Representation Learning for Cross-Modality Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:274-285. [PMID: 32956048 PMCID: PMC8120796 DOI: 10.1109/tmi.2020.3025133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An increasing number of studies are leveraging unsupervised cross-modality synthesis to mitigate the limited label problem in training medical image segmentation models. They typically transfer ground truth annotations from a label-rich imaging modality to a label-lacking imaging modality, under an assumption that different modalities share the same anatomical structure information. However, since these methods commonly use voxel/pixel-wise cycle-consistency to regularize the mappings between modalities, high-level semantic information is not necessarily preserved. In this paper, we propose a novel anatomy-regularized representation learning approach for segmentation-oriented cross-modality image synthesis. It learns a common feature encoding across different modalities to form a shared latent space, where 1) the input and its synthesis present consistent anatomical structure information, and 2) the transformation between two images in one domain is preserved by their syntheses in another domain. We applied our method to the tasks of cross-modality skull segmentation and cardiac substructure segmentation. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art cross-modality medical image segmentation methods.
Collapse
|
29
|
Han T, Nebelung S, Haarburger C, Horst N, Reinartz S, Merhof D, Kiessling F, Schulz V, Truhn D. Breaking medical data sharing boundaries by using synthesized radiographs. SCIENCE ADVANCES 2020; 6:eabb7973. [PMID: 33268370 PMCID: PMC7821879 DOI: 10.1126/sciadv.abb7973] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/14/2020] [Indexed: 05/23/2023]
Abstract
Computer vision (CV) has the potential to change medicine fundamentally. Expert knowledge provided by CV can enhance diagnosis. Unfortunately, existing algorithms often remain below expectations, as databases used for training are usually too small, incomplete, and heterogeneous in quality. Moreover, data protection is a serious obstacle to the exchange of data. To overcome this limitation, we propose to use generative models (GMs) to produce high-resolution synthetic radiographs that do not contain any personal identification information. Blinded analyses by CV and radiology experts confirmed the high similarity of synthesized and real radiographs. The combination of pooled GM improves the performance of CV algorithms trained on smaller datasets, and the integration of synthesized data into patient data repositories can compensate for underrepresented disease entities. By integrating federated learning strategies, even hospitals with few datasets can contribute to and benefit from GM training.
Collapse
Affiliation(s)
- Tianyu Han
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Nicolas Horst
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Sebastian Reinartz
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Dorit Merhof
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen, Aachen, Germany
| | - Fabian Kiessling
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen, Aachen, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Volkmar Schulz
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Truhn
- Aristra GmbH, Berlin, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
30
|
Jiao J, Namburete AIL, Papageorghiou AT, Noble JA. Self-Supervised Ultrasound to MRI Fetal Brain Image Synthesis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4413-4424. [PMID: 32833630 DOI: 10.1109/tmi.2020.3018560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fetal brain magnetic resonance imaging (MRI) offers exquisite images of the developing brain but is not suitable for second-trimester anomaly screening, for which ultrasound (US) is employed. Although expert sonographers are adept at reading US images, MR images which closely resemble anatomical images are much easier for non-experts to interpret. Thus in this article we propose to generate MR-like images directly from clinical US images. In medical image analysis such a capability is potentially useful as well, for instance for automatic US-MRI registration and fusion. The proposed model is end-to-end trainable and self-supervised without any external annotations. Specifically, based on an assumption that the US and MRI data share a similar anatomical latent space, we first utilise a network to extract the shared latent features, which are then used for MRI synthesis. Since paired data is unavailable for our study (and rare in practice), pixel-level constraints are infeasible to apply. We instead propose to enforce the distributions to be statistically indistinguishable, by adversarial learning in both the image domain and feature space. To regularise the anatomical structures between US and MRI during synthesis, we further propose an adversarial structural constraint. A new cross-modal attention technique is proposed to utilise non-local spatial information, by encouraging multi-modal knowledge fusion and propagation. We extend the approach to consider the case where 3D auxiliary information (e.g., 3D neighbours and a 3D location index) from volumetric data is also available, and show that this improves image synthesis. The proposed approach is evaluated quantitatively and qualitatively with comparison to real fetal MR images and other approaches to synthesis, demonstrating its feasibility of synthesising realistic MR images.
Collapse
|
31
|
Jiang J, Hu YC, Tyagi N, Wang C, Lee N, Deasy JO, Sean B, Veeraraghavan H. Self-derived organ attention for unpaired CT-MRI deep domain adaptation based MRI segmentation. Phys Med Biol 2020; 65:205001. [PMID: 33027063 DOI: 10.1088/1361-6560/ab9fca] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To develop and evaluate a deep learning method to segment parotid glands from MRI using unannotated MRI and unpaired expert-segmented CT datasets. We introduced a new self-derived organ attention deep learning network for combined CT to MRI image-to-image translation (I2I) and MRI segmentation, all trained as an end-to-end network. The expert segmentations available on CT scans were combined with the I2I translated pseudo MR images to train the MRI segmentation network. Once trained, the MRI segmentation network alone is required. We introduced an organ attention discriminator that constrains the CT to MR generator to synthesize pseudo MR images that preserve organ geometry and appearance statistics as in real MRI. The I2I translation network training was regularized using the organ attention discriminator, global image-matching discriminator, and cycle consistency losses. MRI segmentation training was regularized by using cross-entropy loss. Segmentation performance was compared against multiple domain adaptation-based segmentation methods using the Dice similarity coefficient (DSC) and Hausdorff distance at the 95th percentile (HD95). All networks were trained using 85 unlabeled T2-weighted fat suppressed (T2wFS) MRIs and 96 expert-segmented CT scans. Performance upper-limit was based on fully supervised MRI training done using the 85 T2wFS MRI with expert segmentations. Independent evaluation was performed on 77 MRIs never used in training. The proposed approach achieved the highest accuracy (left parotid: DSC 0.82 ± 0.03, HD95 2.98 ± 1.01 mm; right parotid: 0.81 ± 0.05, HD95 3.14 ± 1.17 mm) compared to other methods. This accuracy was close to the reference fully supervised MRI segmentation (DSC of 0.84 ± 0.04, a HD95 of 2.24 ± 0.77 mm for the left parotid, and a DSC of 0.84 ± 0.06 and HD95 of 2.32 ± 1.37 mm for the right parotid glands).
Collapse
Affiliation(s)
- Jue Jiang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jiang J, Veeraraghavan H. Unified cross-modality feature disentangler for unsupervised multi-domain MRI abdomen organs segmentation. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2020; 12262:347-358. [PMID: 33364627 DOI: 10.1007/978-3-030-59713-9_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Our contribution is a unified cross-modality feature disentagling approach for multi-domain image translation and multiple organ segmentation. Using CT as the labeled source domain, our approach learns to segment multi-modal (T1-weighted and T2-weighted) MRI having no labeled data. Our approach uses a variational auto-encoder (VAE) to disentangle the image content from style. The VAE constrains the style feature encoding to match a universal prior (Gaussian) that is assumed to span the styles of all the source and target modalities. The extracted image style is converted into a latent style scaling code, which modulates the generator to produce multi-modality images according to the target domain code from the image content features. Finally, we introduce a joint distribution matching discriminator that combines the translated images with task-relevant segmentation probability maps to further constrain and regularize image-to-image (I2I) translations. We performed extensive comparisons to multiple state-of-the-art I2I translation and segmentation methods. Our approach resulted in the lowest average multi-domain image reconstruction error of 1.34±0.04. Our approach produced an average Dice similarity coefficient (DSC) of 0.85 for T1w and 0.90 for T2w MRI for multi-organ segmentation, which was highly comparable to a fully supervised MRI multi-organ segmentation network (DSC of 0.86 for T1w and 0.90 for T2w MRI).
Collapse
Affiliation(s)
- Jue Jiang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
33
|
Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, Mukhopadhyay A. GANs for medical image analysis. Artif Intell Med 2020; 109:101938. [DOI: 10.1016/j.artmed.2020.101938] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
|
34
|
Panayides AS, Amini A, Filipovic ND, Sharma A, Tsaftaris SA, Young A, Foran D, Do N, Golemati S, Kurc T, Huang K, Nikita KS, Veasey BP, Zervakis M, Saltz JH, Pattichis CS. AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J Biomed Health Inform 2020; 24:1837-1857. [PMID: 32609615 PMCID: PMC8580417 DOI: 10.1109/jbhi.2020.2991043] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.
Collapse
|
35
|
Chen C, Dou Q, Chen H, Qin J, Heng PA. Unsupervised Bidirectional Cross-Modality Adaptation via Deeply Synergistic Image and Feature Alignment for Medical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2494-2505. [PMID: 32054572 DOI: 10.1109/tmi.2020.2972701] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unsupervised domain adaptation has increasingly gained interest in medical image computing, aiming to tackle the performance degradation of deep neural networks when being deployed to unseen data with heterogeneous characteristics. In this work, we present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA), to effectively adapt a segmentation network to an unlabeled target domain. Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives. In particular, we simultaneously transform the appearance of images across domains and enhance domain-invariance of the extracted features by leveraging adversarial learning in multiple aspects and with a deeply supervised mechanism. The feature encoder is shared between both adaptive perspectives to leverage their mutual benefits via end-to-end learning. We have extensively evaluated our method with cardiac substructure segmentation and abdominal multi-organ segmentation for bidirectional cross-modality adaptation between MRI and CT images. Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images, and outperforms the state-of-the-art domain adaptation approaches by a large margin.
Collapse
|
36
|
|
37
|
Lan L, You L, Zhang Z, Fan Z, Zhao W, Zeng N, Chen Y, Zhou X. Generative Adversarial Networks and Its Applications in Biomedical Informatics. Front Public Health 2020; 8:164. [PMID: 32478029 PMCID: PMC7235323 DOI: 10.3389/fpubh.2020.00164] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/17/2020] [Indexed: 02/05/2023] Open
Abstract
The basic Generative Adversarial Networks (GAN) model is composed of the input vector, generator, and discriminator. Among them, the generator and discriminator are implicit function expressions, usually implemented by deep neural networks. GAN can learn the generative model of any data distribution through adversarial methods with excellent performance. It has been widely applied to different areas since it was proposed in 2014. In this review, we introduced the origin, specific working principle, and development history of GAN, various applications of GAN in digital image processing, Cycle-GAN, and its application in medical imaging analysis, as well as the latest applications of GAN in medical informatics and bioinformatics.
Collapse
Affiliation(s)
- Lan Lan
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei You
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Zeyang Zhang
- Department of Computer Science and Technology, College of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Zhiwei Fan
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nianyin Zeng
- Department of Instrumental and Electrical Engineering, Xiamen University, Fujian, China
| | - Yidong Chen
- Department of Computer Science and Technology, College of Computer Science, Sichuan University, Chengdu, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
38
|
Chen X, Lian C, Wang L, Deng H, Fung SH, Nie D, Thung KH, Yap PT, Gateno J, Xia JJ, Shen D. One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:787-796. [PMID: 31425025 PMCID: PMC7219540 DOI: 10.1109/tmi.2019.2935409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Compared to computed tomography (CT), magnetic resonance imaging (MRI) delineation of craniomaxillofacial (CMF) bony structures can avoid harmful radiation exposure. However, bony boundaries are blurry in MRI, and structural information needs to be borrowed from CT during the training. This is challenging since paired MRI-CT data are typically scarce. In this paper, we propose to make full use of unpaired data, which are typically abundant, along with a single paired MRI-CT data to construct a one-shot generative adversarial model for automated MRI segmentation of CMF bony structures. Our model consists of a cross-modality image synthesis sub-network, which learns the mapping between CT and MRI, and an MRI segmentation sub-network. These two sub-networks are trained jointly in an end-to-end manner. Moreover, in the training phase, a neighbor-based anchoring method is proposed to reduce the ambiguity problem inherent in cross-modality synthesis, and a feature-matching-based semantic consistency constraint is proposed to encourage segmentation-oriented MRI synthesis. Experimental results demonstrate the superiority of our method both qualitatively and quantitatively in comparison with the state-of-the-art MRI segmentation methods.
Collapse
|
39
|
Yu B, Wang Y, Wang L, Shen D, Zhou L. Medical Image Synthesis via Deep Learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1213:23-44. [PMID: 32030661 DOI: 10.1007/978-3-030-33128-3_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Medical images have been widely used in clinics, providing visual representations of under-skin tissues in human body. By applying different imaging protocols, diverse modalities of medical images with unique characteristics of visualization can be produced. Considering the cost of scanning high-quality single modality images or homogeneous multiple modalities of images, medical image synthesis methods have been extensively explored for clinical applications. Among them, deep learning approaches, especially convolutional neural networks (CNNs) and generative adversarial networks (GANs), have rapidly become dominating for medical image synthesis in recent years. In this chapter, based on a general review of the medical image synthesis methods, we will focus on introducing typical CNNs and GANs models for medical image synthesis. Especially, we will elaborate our recent work about low-dose to high-dose PET image synthesis, and cross-modality MR image synthesis, using these models.
Collapse
Affiliation(s)
- Biting Yu
- School of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia
| | - Yan Wang
- School of Computer Science, Sichuan University, Chengdu, China
| | - Lei Wang
- School of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia
| | - Dinggang Shen
- IDEA Lab, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luping Zhou
- School of Electrical and Information Engineering, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
40
|
Stimpel B, Syben C, Würfl T, Breininger K, Hoelter P, Dörfler A, Maier A. Projection-to-Projection Translation for Hybrid X-ray and Magnetic Resonance Imaging. Sci Rep 2019; 9:18814. [PMID: 31827155 PMCID: PMC6906424 DOI: 10.1038/s41598-019-55108-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/25/2019] [Indexed: 11/09/2022] Open
Abstract
Hybrid X-ray and magnetic resonance (MR) imaging promises large potential in interventional medical imaging applications due to the broad variety of contrast of MRI combined with fast imaging of X-ray-based modalities. To fully utilize the potential of the vast amount of existing image enhancement techniques, the corresponding information from both modalities must be present in the same domain. For image-guided interventional procedures, X-ray fluoroscopy has proven to be the modality of choice. Synthesizing one modality from another in this case is an ill-posed problem due to ambiguous signal and overlapping structures in projective geometry. To take on these challenges, we present a learning-based solution to MR to X-ray projection-to-projection translation. We propose an image generator network that focuses on high representation capacity in higher resolution layers to allow for accurate synthesis of fine details in the projection images. Additionally, a weighting scheme in the loss computation that favors high-frequency structures is proposed to focus on the important details and contours in projection imaging. The proposed extensions prove valuable in generating X-ray projection images with natural appearance. Our approach achieves a deviation from the ground truth of only 6% and structural similarity measure of 0.913 ± 0.005. In particular the high frequency weighting assists in generating projection images with sharp appearance and reduces erroneously synthesized fine details.
Collapse
Affiliation(s)
- Bernhard Stimpel
- Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany.
| | - Christopher Syben
- Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Würfl
- Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Breininger
- Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Philip Hoelter
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Jue J, Jason H, Neelam T, Andreas R, Sean BL, Joseph DO, Harini V. Integrating cross-modality hallucinated MRI with CT to aid mediastinal lung tumor segmentation. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2019; 11769:221-229. [PMID: 32420549 PMCID: PMC7225573 DOI: 10.1007/978-3-030-32226-7_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lung tumors, especially those located close to or surrounded by soft tissues like the mediastinum, are difficult to segment due to the low soft tissue contrast on computed tomography images. Magnetic resonance images contain superior soft-tissue contrast information that can be leveraged if both modalities were available for training. Therefore, we developed a cross-modality educed learning approach where MR information that is educed from CT is used to hallucinate MRI and improve CT segmentation. Our approach, called cross-modality educed deep learning segmentation (CMEDL) combines CT and pseudo MR produced from CT by aligning their features to obtain segmentation on CT. Features computed in the last two layers of parallelly trained CT and MR segmentation networks are aligned. We implemented this approach on U-net and dense fully convolutional networks (dense-FCN). Our networks were trained on unrelated cohorts from open-source the Cancer Imaging Archive CT images (N=377), an internal archive T2-weighted MR (N=81), and evaluated using separate validation (N=304) and testing (N=333) CT-delineated tumors. Our approach using both networks were significantly more accurate (U-net P < 0.001; denseFCN P < 0.001) than CT-only networks and achieved an accuracy (Dice similarity coefficient) of 0.71±0.15 (U-net), 0.74±0.12 (denseFCN) on validation and 0.72±0.14 (U-net), 0.73±0.12 (denseFCN) on the testing sets. Our novel approach demonstrated that educing cross-modality information through learned priors enhances CT segmentation performance.
Collapse
Affiliation(s)
- Jiang Jue
- Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Hu Jason
- Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Tyagi Neelam
- Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Rimner Andreas
- Radiation Oncology, Memorial Sloan Kettering Cancer Center
| | - Berry L. Sean
- Medical Physics, Memorial Sloan Kettering Cancer Center
| | | | | |
Collapse
|
42
|
Gadermayr M, Gupta L, Appel V, Boor P, Klinkhammer BM, Merhof D. Generative Adversarial Networks for Facilitating Stain-Independent Supervised and Unsupervised Segmentation: A Study on Kidney Histology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2293-2302. [PMID: 30762541 DOI: 10.1109/tmi.2019.2899364] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major challenge in the field of segmentation in digital pathology is given by the high effort for manual data annotations in combination with many sources introducing variability in the image domain. This requires methods that are able to cope with variability without requiring to annotate a large amount of samples for each characteristic. In this paper, we develop approaches based on adversarial models for image-to-image translation relying on unpaired training. Specifically, we propose approaches for stain-independent supervised segmentation relying on image-to-image translation for obtaining an intermediate representation. Furthermore, we develop a fully-unsupervised segmentation approach exploiting image-to-image translation to convert from the image to the label domain. Finally, both approaches are combined to obtain optimum performance in unsupervised segmentation independent of the characteristics of the underlying stain. Experiments on patches showing kidney histology proof that stain-translation can be performed highly effectively and can be used for domain adaptation to obtain independence of the underlying stain. It is even capable of facilitating the underlying segmentation task, thereby boosting the accuracy if an appropriate intermediate stain is selected. Combining domain adaptation with unsupervised segmentation finally showed the most significant improvements.
Collapse
|
43
|
Jiang J, Hu YC, Tyagi N, Zhang P, Rimner A, Deasy JO, Veeraraghavan H. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Med Phys 2019; 46:4392-4404. [PMID: 31274206 PMCID: PMC6800584 DOI: 10.1002/mp.13695] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Accurate tumor segmentation is a requirement for magnetic resonance (MR)-based radiotherapy. Lack of large expert annotated MR datasets makes training deep learning models difficult. Therefore, a cross-modality (MR-CT) deep learning segmentation approach that augments training data using pseudo MR images produced by transforming expert-segmented CT images was developed. METHODS Eighty-one T2-weighted MRI scans from 28 patients with non-small cell lung cancers (nine with pretreatment and weekly MRI and the remainder with pre-treatment MRI scans) were analyzed. Cross-modality model encoding the transformation of CT to pseudo MR images resembling T2w MRI was learned as a generative adversarial deep learning network. This model was used to translate 377 expert segmented non-small cell lung cancer CT scans from the Cancer Imaging Archive into pseudo MRI that served as additional training set. This method was benchmarked against shallow learning using random forest, standard data augmentation, and three state-of-the art adversarial learning-based cross-modality data (pseudo MR) augmentation methods. Segmentation accuracy was computed using Dice similarity coefficient (DSC), Hausdorff distance metrics, and volume ratio. RESULTS The proposed approach produced the lowest statistical variability in the intensity distribution between pseudo and T2w MR images measured as Kullback-Leibler divergence of 0.069. This method produced the highest segmentation accuracy with a DSC of (0.75 ± 0.12) and the lowest Hausdorff distance of (9.36 mm ± 6.00 mm) on the test dataset using a U-Net structure. This approach produced highly similar estimations of tumor growth as an expert (P = 0.37). CONCLUSIONS A novel deep learning MR segmentation was developed that overcomes the limitation of learning robust models from small datasets by leveraging learned cross-modality information using a model that explicitly incorporates knowledge of tumors in modality translation to augment segmentation training. The results show the feasibility of the approach and the corresponding improvement over the state-of-the-art methods.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Yu-Chi Hu
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
44
|
Tmenova O, Martin R, Duong L. CycleGAN for style transfer in X-ray angiography. Int J Comput Assist Radiol Surg 2019; 14:1785-1794. [PMID: 31286396 DOI: 10.1007/s11548-019-02022-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE We aim to perform generation of angiograms for various vascular structures as a mean of data augmentation in learning tasks. The task is to enhance the realism of vessels images generated from an anatomically realistic cardiorespiratory simulator to make them look like real angiographies. METHODS The enhancement is performed by applying the CycleGAN deep network for transferring the style of real angiograms acquired during percutaneous interventions into a data set composed of realistically simulated arteries. RESULTS The cycle consistency was evaluated by comparing an input simulated image with the one obtained after two cycles of image translation. An average structural similarity (SSIM) of 0.948 on our data sets has been obtained. The vessel preservation was measured by comparing segmentations of an input image and its corresponding enhanced image using Dice coefficient. CONCLUSIONS We proposed an application of the CycleGAN deep network for enhancing the artificial data as an alternative to classical data augmentation techniques for medical applications, particularly focused on angiogram generation. We discussed success and failure cases, explaining conditions for the realistic data augmentation which respects both the complex physiology of arteries and the various patterns and textures generated by X-ray angiography.
Collapse
Affiliation(s)
- Oleksandra Tmenova
- Department of Software and IT Engineering, École de technologie supérieure., 1100 Notre-Dame W., Montreal, Canada. .,Taras Shevchenko National University of Kyiv, Volodymyrska St, 60, Kyiv, Ukraine.
| | - Rémi Martin
- Department of Software and IT Engineering, École de technologie supérieure., 1100 Notre-Dame W., Montreal, Canada
| | - Luc Duong
- Department of Software and IT Engineering, École de technologie supérieure., 1100 Notre-Dame W., Montreal, Canada
| |
Collapse
|
45
|
Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI. Eur J Nucl Med Mol Imaging 2019; 46:2746-2759. [PMID: 31264170 DOI: 10.1007/s00259-019-04380-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Guodong Zeng
- Institute for Surgical Technology and Biomechanics, University of Bern, CH-3014, Bern, Switzerland
| | - Guoyan Zheng
- Institute for Surgical Technology and Biomechanics, University of Bern, CH-3014, Bern, Switzerland
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
| |
Collapse
|
46
|
|
47
|
Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML. Deep learning in medical imaging and radiation therapy. Med Phys 2019; 46:e1-e36. [PMID: 30367497 PMCID: PMC9560030 DOI: 10.1002/mp.13264] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022] Open
Abstract
The goals of this review paper on deep learning (DL) in medical imaging and radiation therapy are to (a) summarize what has been achieved to date; (b) identify common and unique challenges, and strategies that researchers have taken to address these challenges; and (c) identify some of the promising avenues for the future both in terms of applications as well as technical innovations. We introduce the general principles of DL and convolutional neural networks, survey five major areas of application of DL in medical imaging and radiation therapy, identify common themes, discuss methods for dataset expansion, and conclude by summarizing lessons learned, remaining challenges, and future directions.
Collapse
Affiliation(s)
- Berkman Sahiner
- DIDSR/OSEL/CDRH U.S. Food and Drug AdministrationSilver SpringMD20993USA
| | - Aria Pezeshk
- DIDSR/OSEL/CDRH U.S. Food and Drug AdministrationSilver SpringMD20993USA
| | | | - Xiaosong Wang
- Imaging Biomarkers and Computer‐aided Diagnosis LabRadiology and Imaging SciencesNIH Clinical CenterBethesdaMD20892‐1182USA
| | - Karen Drukker
- Department of RadiologyUniversity of ChicagoChicagoIL60637USA
| | - Kenny H. Cha
- DIDSR/OSEL/CDRH U.S. Food and Drug AdministrationSilver SpringMD20993USA
| | - Ronald M. Summers
- Imaging Biomarkers and Computer‐aided Diagnosis LabRadiology and Imaging SciencesNIH Clinical CenterBethesdaMD20892‐1182USA
| | | |
Collapse
|
48
|
Khalili N, Turk E, Zreik M, Viergever MA, Benders MJNL, Išgum I. Generative Adversarial Network for Segmentation of Motion Affected Neonatal Brain MRI. LECTURE NOTES IN COMPUTER SCIENCE 2019. [DOI: 10.1007/978-3-030-32248-9_36] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Huo Y, Xu Z, Moon H, Bao S, Assad A, Moyo TK, Savona MR, Abramson RG, Landman BA. SynSeg-Net: Synthetic Segmentation Without Target Modality Ground Truth. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 38:10.1109/TMI.2018.2876633. [PMID: 30334788 PMCID: PMC6504618 DOI: 10.1109/tmi.2018.2876633] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A key limitation of deep convolutional neural networks (DCNN) based image segmentation methods is the lack of generalizability. Manually traced training images are typically required when segmenting organs in a new imaging modality or from distinct disease cohort. The manual efforts can be alleviated if the manually traced images in one imaging modality (e.g., MRI) are able to train a segmentation network for another imaging modality (e.g., CT). In this paper, we propose an end-to-end synthetic segmentation network (SynSeg-Net) to train a segmentation network for a target imaging modality without having manual labels. SynSeg-Net is trained by using (1) unpaired intensity images from source and target modalities, and (2) manual labels only from source modality. SynSeg-Net is enabled by the recent advances of cycle generative adversarial networks (CycleGAN) and DCNN. We evaluate the performance of the SynSeg-Net on two experiments: (1) MRI to CT splenomegaly synthetic segmentation for abdominal images, and (2) CT to MRI total intracranial volume synthetic segmentation (TICV) for brain images. The proposed end-to-end approach achieved superior performance to two stage methods. Moreover, the SynSeg-Net achieved comparable performance to the traditional segmentation network using target modality labels in certain scenarios. The source code of SynSeg-Net is publicly available 2.
Collapse
|
50
|
Jiang J, Hu YC, Tyagi N, Zhang P, Rimner A, Mageras GS, Deasy JO, Veeraraghavan H. Tumor-aware, Adversarial Domain Adaptation from CT to MRI for Lung Cancer Segmentation. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2018; 11071:777-785. [PMID: 30294726 PMCID: PMC6169798 DOI: 10.1007/978-3-030-00934-2_86] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present an adversarial domain adaptation based deep learning approach for automatic tumor segmentation from T2-weighted MRI. Our approach is composed of two steps: (i) a tumor-aware unsupervised cross-domain adaptation (CT to MRI), followed by (ii) semi-supervised tumor segmentation using Unet trained with synthesized and limited number of original MRIs. We introduced a novel target specific loss, called tumor-aware loss, for unsupervised cross-domain adaptation that helps to preserve tumors on synthesized MRIs produced from CT images. In comparison, state-of-the art adversarial networks trained without our tumor-aware loss produced MRIs with ill-preserved or missing tumors. All networks were trained using labeled CT images from 377 patients with non-small cell lung cancer obtained from the Cancer Imaging Archive and unlabeled T2w MRIs from a completely unrelated cohort of 6 patients with pre-treatment and 36 on-treatment scans. Next, we combined 6 labeled pre-treatment MRI scans with the synthesized MRIs to boost tumor segmentation accuracy through semi-supervised learning. Semi-supervised training of cycle-GAN produced a segmentation accuracy of 0.66 computed using Dice Score Coefficient (DSC). Our method trained with only synthesized MRIs produced an accuracy of 0.74 while the same method trained in semi-supervised setting produced the best accuracy of 0.80 on test. Our results show that tumor-aware adversarial domain adaptation helps to achieve reasonably accurate cancer segmentation from limited MRI data by leveraging large CT datasets.
Collapse
Affiliation(s)
- Jue Jiang
- Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Yu-Chi Hu
- Medical Physics, Memorial Sloan Kettering Cancer Center
| | - Neelam Tyagi
- Medical Physics, Memorial Sloan Kettering Cancer Center
| | | | - Andreas Rimner
- Radiation Oncology, Memorial Sloan Kettering Cancer Center
| | | | | | | |
Collapse
|