1
|
Gholami M, Hamidi AK, Naghshband Z, Asadi M, Amoli MM. Whole exome sequencing revealed new variants and haplotypes associated with monogenic obesity. J Diabetes Metab Disord 2025; 24:23. [PMID: 39712340 PMCID: PMC11662120 DOI: 10.1007/s40200-024-01507-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/01/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES This study aims to identify new variants and haplotypes associated with monogenic obesity by analyzing known obesity genes in whole exome sequencing (WES) data. METHODS The monogenic obesity-associated genes were identified by using the National Institutes of Health (NIH) Genetic Testing Registry (GTR) monogenic obesity panels. WES was performed on (n = 49) extremely obese (children under 5 with weight-for-height greater than 3 standard deviations (SD) above the World Health Organization (WHO) Child Growth Standards median) and (n = 50) control nonobese (25 > body mass index (BMI) < 30) subjects without a history of childhood obesity, and also Iranome WES data of healthy subjects (n = 800). RESULTS Seventy-four genes were included in WES analyses. After Bonferroni correction, the T allele of rs2275155 on SDCCAG8 was significantly associated with the increased risk of obesity for allelic and co-dominant models (p˂0.05). Also, a significant association was observed for the T allele of rs116167439 on CEP19 and the T allele of rs201676524 a rare variant on ADCY3; for allelic, dominant, overdominant, and co-dominant models (p˂0.05). In the haplotype association study, TC (on CEP19), CATA (on SDCCAG8), CAA, CTA, CAAA, and TTGA (on ADCY3) haplotypes showed significant associations with monogenic obesity (p < 0.05). CONCLUSIONS This study suggested that the T allele of two common variants rs2275155 and rs116167439, also rare variant rs201676524 are associated with an increased risk of monogenic obesity. The significant haplotype associations indicate these variants may be in linkage with causative rare variants and should be considered in future studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-024-01507-2.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Kakavand Hamidi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Naghshband
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
SH2B1 variants as potential causes of non-syndromic monogenic obesity in a Brazilian cohort. Eat Weight Disord 2022; 27:3665-3674. [PMID: 36436143 DOI: 10.1007/s40519-022-01506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/29/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE SH2B1 gene encodes an important adaptor protein to receptor tyrosine kinases or cytokine receptors associated with Janus kinases. This gene has been associated with the structural and functional modulation of neurons and other cells, and impacts on energy and glucose homeostasis. Several studies suggested that alterations in this gene are strong candidates for the development of obesity. However, only a few studies have screened SH2B1 point variants in individuals with obesity. Therefore, the aim of this study was to investigate the prevalence of SH2B1 variants in a Brazilian cohort of patients with severe obesity and candidates to bariatric surgery. METHODS The cohort comprised 122 individuals with severe obesity, who developed this phenotype during childhood. As controls, 100 normal-weight individuals were included. The coding region of SH2B1 gene was screened by Sanger sequencing. RESULTS A total of eight variants were identified in SH2B1, of which p.(Val345Met) and p.(Arg630Gln) variants were rare and predicted as potentially pathogenic by the in the silico algorithms used in this study. The p.(Val345Met) was not found in either the control group or in publicly available databases. This variant was identified in a female patient with severe obesity, metabolic syndrome and hyperglycemia. The p.(Arg630Gln) was also absent in our control group, but it was reported in gnomAD with an extremely low frequency. This variant was observed in a female patient with morbid obesity, metabolic syndrome, hypertension and severe binge-eating disorder. CONCLUSION Our study reported for the first time two rare and potentially pathogenic variants in Brazilian patients with severe obesity. Further functional studies will be necessary to confirm and elucidate the impact of these variants on SH2B1 protein function and stability, and their impact on energetic metabolism. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
3
|
Racca JD, Chatterjee D, Chen YS, Rai RK, Yang Y, Georgiadis MM, Haas E, Weiss MA. Tenuous transcriptional threshold of human sex determination. II. SRY exploits water-mediated clamp at the edge of ambiguity. Front Endocrinol (Lausanne) 2022; 13:1029177. [PMID: 36568077 PMCID: PMC9771472 DOI: 10.3389/fendo.2022.1029177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Y-encoded transcription factor SRY initiates male differentiation in therian mammals. This factor contains a high-mobility-group (HMG) box, which mediates sequence-specific DNA binding with sharp DNA bending. A companion article in this issue described sex-reversal mutations at box position 72 (residue 127 in human SRY), invariant as Tyr among mammalian orthologs. Although not contacting DNA, the aromatic ring seals the domain's minor wing at a solvent-exposed junction with a basic tail. A seeming paradox was posed by the native-like biochemical properties of inherited Swyer variant Y72F: its near-native gene-regulatory activity is consistent with the father's male development, but at odds with the daughter's XY female somatic phenotype. Surprisingly, aromatic rings (Y72, F72 or W72) confer higher transcriptional activity than do basic or polar side chains generally observed at solvated DNA interfaces (Arg, Lys, His or Gln). Whereas biophysical studies (time-resolved fluorescence resonance energy transfer and heteronuclear NMR spectroscopy) uncovered only subtle perturbations, dissociation of the Y72F complex was markedly accelerated relative to wild-type. Studies of protein-DNA solvation by molecular-dynamics (MD) simulations of an homologous high-resolution crystal structure (SOX18) suggest that Y72 para-OH anchors a network of water molecules at the tail-DNA interface, perturbed in the variant in association with nonlocal conformational fluctuations. Loss of the Y72 anchor among SRY variants presumably "unclamps" its basic tail, leading to (a) rapid DNA dissociation despite native affinity and (b) attenuated transcriptional activity at the edge of sexual ambiguity. Conservation of Y72 suggests that this water-mediated clamp operates generally among SRY and metazoan SOX domains.
Collapse
Affiliation(s)
- Joseph D. Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ratan K. Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Elisha Haas
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| |
Collapse
|
4
|
The MC4R p.Ile269Asn mutation confers a high risk for type 2 diabetes in the Mexican population via obesity dependent and independent effects. Sci Rep 2021; 11:3097. [PMID: 33542413 PMCID: PMC7862248 DOI: 10.1038/s41598-021-82728-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
We investigated the association between the loss-of-function mutation MC4R p.Ile269Asn and T2D risk in the Mexican population. We enrolled 6929 adults [3175 T2D cases and 3754 normal glucose tolerant (NGT) controls] and 994 NGT children in the study. Anthropometric data and T2D-related quantitative traits were studied in 994 NGT children and 3754 NGT adults. The MC4R p.Ile269Asn mutation was genotyped using TaqMan. The MC4R p.Ile269Asn mutation was associated with T2D [OR = 2.00, 95% confidence interval (CI) 1.35-2.97, p = 0.00057] in Mexican adults. Additional adjustment for body-mass index (BMI) attenuated but did not remove the association (OR = 1.70, 95% CI 1.13-2.56, p = 0.011). The MC4R p.Ile269Asn mutation was associated with T2D (OR = 1.88, 95% CI 1.14-3.08, p = 0.013) in a subset of 1269 T2D cases and 1269 NGT controls matched for sex, age, and BMI. A mediation analysis estimated that BMI accounts for 22.7% of the association between MC4R p.Ile269Asn mutation and T2D risk (p = 4.55 × 10-6). An association was observed between the MC4R p.Ile269Asn mutation and BMI in NGT children and adults (children: beta = 3.731 ± 0.958, p = 0.0001; adults: beta = 2.269 ± 0.536, p = 2.3 × 10-5). In contrast, the mutation was not associated with T2D-related quantitative traits. We demonstrate that the MC4R p.Ile269Asn mutation predisposes to T2D via obesity-dependent and independent effects in the Mexican population.
Collapse
|
5
|
Littleton SH, Berkowitz RI, Grant SFA. Genetic Determinants of Childhood Obesity. Mol Diagn Ther 2020; 24:653-663. [PMID: 33006084 PMCID: PMC7680380 DOI: 10.1007/s40291-020-00496-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Obesity represents a major health burden to both developed and developing countries. Furthermore, the incidence of obesity is increasing in children. Obesity contributes substantially to mortality in the United States by increasing the risk for type 2 diabetes, cardiovascular-related diseases, and other comorbidities. Despite environmental changes over past decades, including increases in high-calorie foods and sedentary lifestyles, there is very clear evidence of a genetic predisposition to obesity risk. Childhood obesity cases can be categorized in one of two ways: syndromic or non-syndromic. Syndromic obesity includes disorders such as Prader-Willi syndrome, Bardet-Biedl syndrome, and Alström syndrome. Non-syndromic cases of obesity can be further separated into rarer instances of monogenic obesity and much more common forms of polygenic obesity. The advent of genome-wide association studies (GWAS) and next-generation sequencing has driven significant advances in our understanding of the genetic contribution to childhood obesity. Many rare and common genetic variants have been shown to contribute to the heritability in obesity, although the molecular mechanisms underlying most of these variants remain unclear. An important caveat of GWAS efforts is that they do not strictly represent gene target discoveries, rather simply the uncovering of robust genetic signals. One clear example of this is with progress in understanding the key obesity signal harbored within an intronic region of the FTO gene. It has been shown that the non-coding region in which the variant actually resides in fact influences the expression of genes distal to FTO instead, specifically IRX3 and IRX5. Such discoveries suggest that associated non-coding variants can be embedded within or next to one gene, but commonly influence the expression of other, more distal effector genes. Advances in genetics and genomics are therefore contributing to a deeper understanding of childhood obesity, allowing for development of clinical tools and therapeutic agents.
Collapse
Affiliation(s)
- Sheridan H Littleton
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Robert I Berkowitz
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, USA.
- Divisions of Genetics and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
6
|
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20:467-484. [PMID: 31068683 DOI: 10.1038/s41576-019-0127-1] [Citation(s) in RCA: 1108] [Impact Index Per Article: 184.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.
Collapse
Affiliation(s)
- Vivian Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Nikunj Patel
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Michelle Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Québec City, Québec, Canada.,Department of Molecular Medicine, Laval University, Québec City, Quebec, Canada
| | - Guillaume Paré
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada. .,Inserm UMRS 954 N-GERE (Nutrition-Genetics-Environmental Risks), University of Lorraine, Faculty of Medicine, Nancy, France.
| |
Collapse
|
7
|
Qasim A, Mayhew AJ, Ehtesham S, Alyass A, Volckmar AL, Herpertz S, Hinney A, Hebebrand J, Meyre D. Gain-of-function variants in the melanocortin 4 receptor gene confer susceptibility to binge eating disorder in subjects with obesity: a systematic review and meta-analysis. Obes Rev 2019; 20:13-21. [PMID: 30306707 DOI: 10.1111/obr.12761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Abstract
The association between coding variants in the melanocortin 4 receptor gene (MC4R) and binge eating disorder (BED) in patients with obesity is controversial. Two independent reviewers systematically searched MEDLINE, Embase, PsycINFO, BIOSIS Previews, Web of Science Core Collection and Google Scholar up to February 2018, using terms describing the MC4R gene and BED. Six of 103 identified references were included. Studies examined associations between at least one coding variant/mutation in MC4R and BED and screened for BED as per the Diagnostic and Statistical Manual of Mental Disorders. Risk of bias was assessed using a modified version of the Q-Genie tool, and overall quality of evidence was assessed using Grading of Recommendations Assessment, Development and Evaluation guidance. Meta-analysis was conducted via logistic regression models. A positive association between gain-of-function (GOF) variants in the MC4R and BED was observed (odds ratio [OR] = 3.05; 95% confidence interval [CI]: 1.82, 5.04; p = 1.7 × 10-5 ), while no association was detected between loss-of-function (LOF) mutations and BED (OR = 1.50; 95% CI: 0.73, 2.96; p = 0.25). Similar results were found after accounting for study quality (GOF variants: OR = 3.15; 95% CI: 1.76, 5.66; p = 1.1 × 10-4 ; LOF mutations: OR = 1.50; 95% CI: 0.73, 2.97; p = 0.25). Our systematic review and meta-analysis provides evidence that GOF variants as opposed to LOF mutations in MC4R are associated with BED in subjects with obesity.
Collapse
Affiliation(s)
- A Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - A J Mayhew
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - S Ehtesham
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - A Alyass
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - A-L Volckmar
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg - Essen, Essen, Germany
| | - S Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL University Clinic, Ruhr University Bochum, Bochum, Germany
| | - A Hinney
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg - Essen, Essen, Germany
| | - J Hebebrand
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg - Essen, Essen, Germany
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Reddon H, Patel Y, Turcotte M, Pigeyre M, Meyre D. Revisiting the evolutionary origins of obesity: lazy versus peppy-thrifty genotype hypothesis. Obes Rev 2018; 19:1525-1543. [PMID: 30261552 DOI: 10.1111/obr.12742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 12/31/2022]
Abstract
The recent global obesity epidemic is attributed to major societal and environmental changes, such as excessive energy intake and sedentary lifestyle. However, exposure to 'obesogenic' environments does not necessarily result in obesity at the individual level, as 40-75% of body mass index variation in population is attributed to genetic differences. The thrifty genotype theory posits that genetic variants promoting efficient food sequestering and optimal deposition of fat during periods of food abundance were evolutionarily advantageous for the early hunter-gatherer and were positively selected. However, the thrifty genotype is likely too simplistic and fails to provide a justification for the complex distribution of obesity predisposing gene variants and for the broad range of body mass index observed in diverse ethnic groups. This review proposes that gene pleiotropy may better account for the variability in the distribution of obesity susceptibility alleles across modern populations. We outline the lazy-thrifty versus peppy-thrifty genotype hypothesis and detail the body of evidence in the literature in support of this novel concept. Future population genetics and mathematical modelling studies that account for pleiotropy may further improve our understanding of the evolutionary origins of the current obesity epidemic.
Collapse
Affiliation(s)
- H Reddon
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Y Patel
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - M Pigeyre
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|