1
|
Zhang Y, Chen Y, Bai X, Cheng G, Cao T, Dong L, Zhao J, Zhang Y, Qu H, Kong H, Zhao Y. Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice. Molecules 2023; 28:molecules28041830. [PMID: 36838814 PMCID: PMC9962818 DOI: 10.3390/molecules28041830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
With the extension of the human life span and the increasing pressure of women's work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a certain extent. Glycyrrhizae radix et rhizome (GRR) is commonly made into a charcoal processed product, termed GRR Carbonisatas (GRRC), for use in traditional Chinese medicine (TCM). GRRC is widely used to treat MPS and other gynecological diseases. In this study, GRRC was prepared through pyrolysis. Subsequently, GRR-derived carbon dots (GRR-CDs) were purified through dialysis and characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron microscopy, and high-performance liquid chromatography. The effects of GRR-CDs on MPS were examined and confirmed using ovariectomized female mice models. The GRR-CDs ranged from 1.0 to 3.0 nm in diameter and with multiple surface chemical groups, as indicated by the results. GRR-CDs can elevate the estradiol (E2) level of healthy female mice. Moreover, GRR-CDs can alleviate MPS using the typical ovariectomized mice model, as confirmed by elevating the estradiol (E2) level and reducing the degree of follicle stimulating hormone (FSH) and luteinizing hormone (LH) and raising the degree of uterine atrophy. The results of this study suggested that GRR-CDs may be a potential clinical candidate for the treatment of MPS, which also provides a possibility for nanodrugs to treat hormonal diseases.
Collapse
Affiliation(s)
- Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyou Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| |
Collapse
|
2
|
Di Luigi L, Greco EA, Fossati C, Aversa A, Sgrò P, Antinozzi C. Clinical Concerns on Sex Steroids Variability in Cisgender and Transgender Women Athletes. Int J Sports Med 2023; 44:81-94. [PMID: 36174581 DOI: 10.1055/a-1909-1196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In the female athletic community, there are several endogenous and exogenous variables that influence the status of the hypothalamus-pituitary-ovarian axis and serum sex steroid hormones concentrations (e. g., 17β-estradiol, progesterone, androgens) and their effects. Moreover, female athletes with different sex chromosome abnormalities exist (e. g., 46XX, 46XY, and mosaicism). Due to the high variability of sex steroid hormones serum concentrations and responsiveness, female athletes may have different intra- and inter-individual biological and functional characteristics, health conditions, and sports-related health risks that can influence sports performance and eligibility. Consequently, biological, functional, and/or sex steroid differences may exist in the same and in between 46XX female athletes (e. g., ovarian rhythms, treated or untreated hypogonadism and hyperandrogenism), between 46XX and 46XY female athletes (e. g., treated or untreated hyperandrogenism/disorders of sexual differentiation), and between transgender women and eugonadal cisgender athletes. From a healthcare perspective, dedicated physicians need awareness, knowledge, and an understanding of sex steroid hormones' variability and related health concerns in female athletes to support physiologically healthy, safe, fair, and inclusive sports participation. In this narrative overview, we focus on the main clinical relationships between hypothalamus-pituitary-ovarian axis function, endogenous sex steroids and health status, health risks, and sports performance in the heterogeneous female athletic community.
Collapse
Affiliation(s)
- Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma 'Foro Italico', Rome, Italy
| | - Emanuela A Greco
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma 'Foro Italico', Rome, Italy
- Department of Science of Movement, Università degli Studi Niccolò Cusano, Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma 'Foro Italico', Rome, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Paolo Sgrò
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma 'Foro Italico', Rome, Italy
| | - Cristina Antinozzi
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma 'Foro Italico', Rome, Italy
| |
Collapse
|
3
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
4
|
Kang S, Park YM, Kwon DJ, Chung YJ, Namkung J, Han K, Ko SH. Reproductive Life Span and Severe Hypoglycemia Risk in Postmenopausal Women with Type 2 Diabetes Mellitus. Diabetes Metab J 2022; 46:578-591. [PMID: 35067011 PMCID: PMC9353572 DOI: 10.4093/dmj.2021.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Estrogen promotes glucose homeostasis, enhances insulin sensitivity, and maintains counterregulatory responses in recurrent hypoglycemia in women of reproductive age. Postmenopausal women with type 2 diabetes mellitus (T2DM) might be more vulnerable to severe hypoglycemia (SH) events. However, the relationship between reproductive factors and SH occurrence in T2DM remains unelucidated. METHODS This study included data on 181,263 women with postmenopausal T2DM who participated in a national health screening program from January 1 to December 31, 2009, obtained using the Korean National Health Insurance System database. Outcome data were obtained until December 31, 2018. Associations between reproductive factors and SH incidence were assessed using Cox proportional hazards models. RESULTS During the mean follow-up of 7.9 years, 11,279 (6.22%) postmenopausal women with T2DM experienced SH episodes. A longer reproductive life span (RLS) (≥40 years) was associated with a lower SH risk compared to a shorter RLS (<30 years) (adjusted hazard ratio [HR], 0.74; 95% confidence interval [CI], 0.69 to 0.80; P for trend <0.001) after multivariable adjustment. SH risk decreased with every 5-year increment of RLS (with <30 years as a reference [adjusted HR, 0.91; 95% CI, 0.86 to 0.95; P=0.0001 for 30-34 years], [adjusted HR, 0.80; 95% CI, 0.76 to 0.84; P<0.001 for 35-39 years], [adjusted HR, 0.74; 95% CI, 0.68 to 0.81; P<0.001 for ≥40 years]). The use of hormone replacement therapy (HRT) was associated with a lower SH risk than HRT nonuse. CONCLUSION Extended exposure to endogenous ovarian hormone during lifetime may decrease the number of SH events in women with T2DM after menopause.
Collapse
Affiliation(s)
- Soyeon Kang
- Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Moon Park
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dong Jin Kwon
- Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn-Jee Chung
- Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Namkung
- Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Molecular profiling of ginsenoside metabolites to identify estrogen receptor alpha activity. Gene 2021; 813:146108. [PMID: 34929341 DOI: 10.1016/j.gene.2021.146108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
20(S)-Protopanaxadiol (PPD) and 20(S)-Protopanaxatriol (PPT) are major metabolites of ginseng in humans and are considered to have estrogenic activity in cellular bioassays. In this study, we conducted in silico analyses to determine whether PPD and PPT interact with estrogen receptor alpha (ERα) and compared them with ERα agonists, partial agonists, and antagonists to identify their ERα activity. The transcriptome profile of 17β-estradiol (E2), PPD, and PPT in MCF-7 cells expressing ERα was further compared to understand the ERα activity of ginsenoside metabolites. The results showed that PPD and PPT interacted with the 1ERE, 1GWR, and 3UUD ERα proteins in the E2 interaction model, the 3ERD protein in the diethylstilbestrol (DES) interaction model, and the 1X7R protein in the genistein (GEN) interaction model. Conversely, neither the 4PP6 protein of the interaction model with the antagonist resveratrol (RES) nor the 1ERR protein of the interaction model with the antagonist raloxifene (RAL) showed the conformation of amino acid residues. When E2, PPD, and PPT were exposed to MCF-7 cells, cell proliferation and gene expression were observed. The transcriptomic profiles of E2, PPD, and PPT were compared using a knowledge-based pathway. PPD-induced transcription profiling was similar to that of E2, and the neural transmission pathway was detected in both compounds. In contrast, PPT-induced transcription profiling displayed characteristics of gene expression associated with systemic lupus erythematosus. These results suggest that ginsenoside metabolites have ERα agonist activity and exhibit neuroprotective effects and anti-inflammatory actions. However, a meta-analysis using public microarray data showed that the mother compounds GRb1 and GRg1 of PPD and PPT showed metabolic functions in insulin signaling pathways, condensed DNA repair and cell cycle pathways, and immune response and synaptogenesis. These results suggest that the ginsenoside metabolites have potent ERα agonist activity; however, their gene expression profiles may differ from those of E2.
Collapse
|
6
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
7
|
Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail 2021; 43:619-642. [PMID: 33784950 PMCID: PMC8018493 DOI: 10.1080/0886022x.2021.1901739] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are posing great threats to global health within this century. Studies have suggested that estrogen and estrogen receptors (ERs) play important roles in many physiological processes in the kidney. For instance, they are crucial in maintaining mitochondrial homeostasis and modulating endothelin-1 (ET-1) system in the kidney. Estrogen takes part in the kidney repair and regeneration via its receptors. Estrogen also participates in the regulation of phosphorus homeostasis via its receptors in the proximal tubule. The ERα polymorphisms have been associated with the susceptibilities and outcomes of several renal diseases. As a consequence, the altered or dysregulated estrogen/ERs signaling pathways may contribute to a variety of kidney diseases, including various causes-induced AKI, diabetic kidney disease (DKD), lupus nephritis (LN), IgA nephropathy (IgAN), CKD complications, etc. Experimental and clinical studies have shown that targeting estrogen/ERs signaling pathways might have protective effects against certain renal disorders. However, many unsolved problems still exist in knowledge regarding the roles of estrogen and ERs in distinct kidney diseases. Further research is needed to shed light on this area and to enable the discovery of pathway-specific therapies for kidney diseases.
Collapse
Affiliation(s)
- Hao-Yang Ma
- Department of Geriatrics, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Lacouture A, Jobin C, Weidmann C, Berthiaume L, Bastien D, Laverdière I, Pelletier M, Audet-Walsh É. A FACS-Free Purification Method to Study Estrogen Signaling, Organoid Formation, and Metabolic Reprogramming in Mammary Epithelial Cells. Front Endocrinol (Lausanne) 2021; 12:672466. [PMID: 34456857 PMCID: PMC8397380 DOI: 10.3389/fendo.2021.672466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Few in vitro models are used to study mammary epithelial cells (MECs), and most of these do not express the estrogen receptor α (ERα). Primary MECs can be used to overcome this issue, but methods to purify these cells generally require flow cytometry and fluorescence-activated cell sorting (FACS), which require specialized instruments and expertise. Herein, we present in detail a FACS-free protocol for purification and primary culture of mouse MECs. These MECs remain differentiated for up to six days with >85% luminal epithelial cells in two-dimensional culture. When seeded in Matrigel, they form organoids that recapitulate the mammary gland's morphology in vivo by developing lumens, contractile cells, and lobular structures. MECs express a functional ERα signaling pathway in both two- and three-dimensional cell culture, as shown at the mRNA and protein levels and by the phenotypic characterization. Extracellular metabolic flux analysis showed that estrogens induce a metabolic switch favoring aerobic glycolysis over mitochondrial respiration in MECs grown in two-dimensions, a phenomenon known as the Warburg effect. We also performed mass spectrometry (MS)-based metabolomics in organoids. Estrogens altered the levels of metabolites from various pathways, including aerobic glycolysis, citric acid cycle, urea cycle, and amino acid metabolism, demonstrating that ERα reprograms cell metabolism in mammary organoids. Overall, we have optimized mouse MEC isolation and purification for two- and three-dimensional cultures. This model represents a valuable tool to study how estrogens modulate mammary gland biology, and particularly how these hormones reprogram metabolism during lactation and breast carcinogenesis.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec City, QC, Canada
| | - Cynthia Jobin
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec City, QC, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec City, QC, Canada
| | - Line Berthiaume
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec City, QC, Canada
| | - Dominic Bastien
- Centre de recherche sur le cancer de l’Université Laval, Québec City, QC, Canada
- Faculty of Pharmacy, University Laval, Quebec City, QC, Canada
| | - Isabelle Laverdière
- Centre de recherche sur le cancer de l’Université Laval, Québec City, QC, Canada
- Faculty of Pharmacy, University Laval, Quebec City, QC, Canada
- Oncology Axis, Centre de recherche du CHU de Québec - Université Laval, Quebec City, QC, Canada
- Department of Pharmacy, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Martin Pelletier
- Infectious and Immune Disease Axis, CHU de Québec-Université Laval Research Center, Québec, QC, Canada
- ARThrite Research Center, Laval University, Québec, QC, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Centre de recherche sur le cancer de l’Université Laval, Québec City, QC, Canada
- *Correspondence: Étienne Audet-Walsh,
| |
Collapse
|
9
|
González-Granillo M, Savva C, Li X, Ghosh Laskar M, Angelin B, Gustafsson JÅ, Korach-André M. Selective estrogen receptor (ER)β activation provokes a redistribution of fat mass and modifies hepatic triglyceride composition in obese male mice. Mol Cell Endocrinol 2020; 502:110672. [PMID: 31811898 DOI: 10.1016/j.mce.2019.110672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Estrogen exerts its action through the binding to two major receptors, estrogen receptor (ER)α and β. Recently, the beneficial role of selective ERβ activation in the regulation of metabolic homeostasis in obesity has been demonstrated, but its importance is still controversial. However, no data are available regarding possible gender differences in response to pharmaceutical activation of ERβ. Male mice were fed a control diet (CD) or a high fat diet (HFD) before being treated with the ERβ selective ligand, 4-(2-(3-5-dimethylisoxazol-4-yl)-1H-indol-3yl)phenol (DIP) in the same conditions as in our recently published paper in female mice. Magnetic resonance imaging and spectroscopy were performed repeatedly in vivo after 6 weeks of diet and after 2 weeks of DIP. Adipose tissue distribution and hepatic triglycerides composition were quantified. HFD-treated males showed a feminization of their fat distribution towards more subcutaneous fat depots and increase total fat content and visceral adipose tissue showed clear browning sites after DIP. Hepatic lipid composition was modified by DIP, with less saturated and more unsaturated lipids and an improved insulin sensitivity. Finally, brown adipose tissue size expended after DIP, due to an increase of the size of the lipid droplets. Our data demonstrate that selective activation of ERβ exerts a tissue-specific and sex-dependent response to metabolic adaptation to overfeeding. Most importantly, together with our previously published results in females, the current findings support the concept that sex should be considered in the future development of obesity-moderating drugs.
Collapse
Affiliation(s)
- Marcela González-Granillo
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christina Savva
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Xidan Li
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Moumita Ghosh Laskar
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition Huddinge, Karolinska Institutet, Sweden
| | - Marion Korach-André
- Department of Medicine, Metabolism Unit, KI/AZ Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
10
|
Li P, Zhou C, Yan Y, Li J, Liu J, Zhang Y, Liu P. Crumbs protein homolog 3 (CRB3) expression is associated with oestrogen and progesterone receptor positivity in breast cancer. Clin Exp Pharmacol Physiol 2019; 46:837-844. [PMID: 31087799 PMCID: PMC6772053 DOI: 10.1111/1440-1681.13104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Abstract
The crumbs protein homolog 3 (CRB3) regulates the tight junction to help maintain epithelial polarity. Altered CRB3 expression was associated with carcinogenesis of epithelial cells. This study detected CRB3 expression in 192 cases of breast cancer tissues and in the Molecular Taxonomy of Breast Cancer International Consortium (Metabric) and The Cancer Genome Atlas (TCGA) datasets for association with triple negative breast cancer (TNBC) phenotypes. The in vitro experiments confirm the ex vivo data. The data showed that levels of both CRB3 mRNA and protein were associated with TNBC phenotypes, ie, 41.1% (39/95) of ER+ breast cancer was CRB3-positive, whereas 26.9% (25/93) ER- tumour was CRB3-positive (P = 0.046). Moreover, 47.6% (30/63) of PR+ breast cancer was CRB3-positive vs 28.4% (33/116) PR- tumours positive for CRB3 (P = 0.013). In addition, 40.1% (27/66) of ER+/PR+ tumour was CRB3-positive, but only 22.4% (19/85) of TNBC showed CRB3 expression (P = 0.048). Indeed, levels of CRB3 mRNA were higher in non-TNBC than TNBC in both Metabric (P = 3.682e-10) and TCGA datasets (P = 2.501e-07). The in vitro data showed that CRB3 expression was higher in luminal (MCF7 and T47D) than in HER2 (MDA-MB-453 and SK-BR-3) and basal (MDA-MB-231 and BT-549) breast cancer cell lines. More interestingly, ERα regulated expression of CRB3 protein in MCF7 and BT-549 cells and ERα expression was associated with CRB3 expression in breast cancer tissues specimens. This study demonstrated that ERα could be a novel regulator for CRB3 expression in breast cancer.
Collapse
Affiliation(s)
- Pingping Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Can Zhou
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yu Yan
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Juan Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yan Zhang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Peijun Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
11
|
Grande F, Rizzuti B, Occhiuzzi MA, Ioele G, Casacchia T, Gelmini F, Guzzi R, Garofalo A, Statti G. Identification by Molecular Docking ofHomoisoflavones from Leopoldia comosa as Ligands of Estrogen Receptors. Molecules 2018; 23:molecules23040894. [PMID: 29649162 PMCID: PMC6017050 DOI: 10.3390/molecules23040894] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
The physiological responses to estrogen hormones are mediated within specific tissues by at least two distinct receptors, ERα and ERβ. Several natural and synthetic molecules show activity by interacting with these proteins. In particular, a number of vegetal compounds known as phytoestrogens shows estrogenic or anti-estrogenic activity. The majority of these compounds belongs to the isoflavones family and the most representative one, genistein, shows anti-proliferative effects on various hormone-sensitive cancer cells, including breast, ovarian and prostate cancer. In this work we describe the identification of structurally related homoisoflavones isolated from Leopoldia comosa (L.) Parl. (L. comosa), a perennial bulbous plant, potentially useful as hormonal substitutes or complements in cancer treatments. Two of these compounds have been selected as potential ligands of estrogen receptors (ERs) and the interaction with both isoforms of estrogen receptors have been investigated through molecular docking on their crystallographic structures. The results provide evidence of the binding of these compounds to the target receptors and their interactions with key residues of the active sites of the two proteins, and thus they could represent suitable leads for the development of novel tools for the dissection of ER signaling and the development of new pharmacological treatments in hormone-sensitive cancers.
Collapse
Affiliation(s)
- Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Maria A Occhiuzzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giuseppina Ioele
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Teresa Casacchia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Fabrizio Gelmini
- Department of Environmental Science and Policy-ESP, University of Milan, Via Celoria 2, 20133 Milan, Italy.
| | - Rita Guzzi
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
- Department of Physics, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Antonio Garofalo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende (CS), Italy.
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Ampl. Polifunzionale, Via P. Bucci, 87036 Rende (CS), Italy.
| |
Collapse
|
12
|
Trenti A, Tedesco S, Boscaro C, Trevisi L, Bolego C, Cignarella A. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle. Int J Mol Sci 2018; 19:ijms19030859. [PMID: 29543707 PMCID: PMC5877720 DOI: 10.3390/ijms19030859] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Serena Tedesco
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | | |
Collapse
|