1
|
Ilg W, Milne S, Schmitz-Hübsch T, Alcock L, Beichert L, Bertini E, Mohamed Ibrahim N, Dawes H, Gomez CM, Hanagasi H, Kinnunen KM, Minnerop M, Németh AH, Newman J, Ng YS, Rentz C, Samanci B, Shah VV, Summa S, Vasco G, McNames J, Horak FB. Quantitative Gait and Balance Outcomes for Ataxia Trials: Consensus Recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1566-1592. [PMID: 37955812 PMCID: PMC11269489 DOI: 10.1007/s12311-023-01625-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.
Collapse
Affiliation(s)
- Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 25, 72076, Tübingen, Germany.
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany.
| | - Sarah Milne
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, Melbourne University, Melbourne, VIC, Australia
- Physiotherapy Department, Monash Health, Clayton, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Frankston, VIC, Australia
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation of Max-Delbrueck Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Alcock
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Lukas Beichert
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | | | - Helen Dawes
- NIHR Exeter BRC, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jane Newman
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Clara Rentz
- Institute of Neuroscience and Medicine (INM-1)), Research Centre Juelich, Juelich, Germany
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vrutangkumar V Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| | - Susanna Summa
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gessica Vasco
- Movement Analysis and Robotics Laboratory (MARLab), Neurorehabilitation Unit, Neurological Science and Neurorehabilitation Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - James McNames
- APDM Precision Motion, Clario, Portland, OR, USA
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| |
Collapse
|
2
|
Németh AH, Antoniades CA, Dukart J, Minnerop M, Rentz C, Schuman BJ, van de Warrenburg B, Willemse I, Bertini E, Gupta AS, de Mello Monteiro CB, Almoajil H, Quinn L, Perlman SB, Horak F, Ilg W, Traschütz A, Vogel AP, Dawes H. Using Smartphone Sensors for Ataxia Trials: Consensus Guidance by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:912-923. [PMID: 38015365 PMCID: PMC11102363 DOI: 10.1007/s12311-023-01608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Smartphone sensors are used increasingly in the assessment of ataxias. To date, there is no specific consensus guidance regarding a priority set of smartphone sensor measurements, or standard assessment criteria that are appropriate for clinical trials. As part of the Ataxia Global Initiative Digital-Motor Biomarkers Working Group (AGI WG4), aimed at evaluating key ataxia clinical domains (gait/posture, upper limb, speech and oculomotor assessments), we provide consensus guidance for use of internal smartphone sensors to assess key domains. Guidance was developed by means of a literature review and a two stage Delphi study conducted by an Expert panel, which surveyed members of AGI WG4, representing clinical, research, industry and patient-led experts, and consensus meetings by the Expert panel to agree on standard criteria and map current literature to these criteria. Seven publications were identified that investigated ataxias using internal smartphone sensors. The Delphi 1 survey ascertained current practice, and systems in use or under development. Wide variations in smartphones sensor use for assessing ataxia were identified. The Delphi 2 survey identified seven measures that were strongly endorsed as priorities in assessing 3/4 domains, namely gait/posture, upper limb, and speech performance. The Expert panel recommended 15 standard criteria to be fulfilled in studies. Evaluation of current literature revealed that none of the studies met all criteria, with most being early-phase validation studies. Our guidance highlights the importance of consensus, identifies priority measures and standard criteria, and will encourage further research into the use of internal smartphone sensors to measure ataxia digital-motor biomarkers.
Collapse
Affiliation(s)
- Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chrystalina A Antoniades
- Neurometrology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, (INM-1), Research Centre Jülich, Jülich, Germany
| | - Clara Rentz
- Institute of Neuroscience and Medicine, (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6525, Nijmegen, Netherlands
| | - Ilse Willemse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept Neurosciences, Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carlos Bandeira de Mello Monteiro
- Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
- School of Arts, Science and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Hajar Almoajil
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Damman, Saudi Arabia
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| | | | - Fay Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- APDM Precision Motion, Clario, Portland, OR, USA
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Andreas Traschütz
- Research Division "Translational Genomics of Neurodegenerative Diseases", Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Adam P Vogel
- Centre for Neuroscience of Speech, The University of Melbourne, Melbourne, Australia
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Neurology, University Hospital Tübingen, Tübingen, Germany
- Redenlab Inc, Melbourne, Australia
| | - Helen Dawes
- NIHR Exeter Biomedical Research Centre, Medical School, Faculty of Health and Life Sciences, College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, UK.
| |
Collapse
|
3
|
Seemann J, Daghsen L, Cazier M, Lamy JC, Welter ML, Giese MA, Synofzik M, Durr A, Ilg W, Coarelli G. Digital Gait Measures Capture 1-Year Progression in Early-Stage Spinocerebellar Ataxia Type 2. Mov Disord 2024; 39:788-797. [PMID: 38419144 DOI: 10.1002/mds.29757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND With disease-modifying drugs in reach for cerebellar ataxias, fine-grained digital health measures are highly warranted to complement clinical and patient-reported outcome measures in upcoming treatment trials and treatment monitoring. These measures need to demonstrate sensitivity to capture change, in particular in the early stages of the disease. OBJECTIVE Our aim is to unravel gait measures sensitive to longitudinal change in the-particularly trial-relevant-early stage of spinocerebellar ataxia type 2 (SCA2). METHODS We performed a multicenter longitudinal study with combined cross-sectional and 1-year interval longitudinal analysis in early-stage SCA2 participants (n = 23, including nine pre-ataxic expansion carriers; median, ATXN2 CAG repeat expansion 38 ± 2; median, Scale for the Assessment and Rating of Ataxia [SARA] score 4.8 ± 4.3). Gait was assessed using three wearable motion sensors during a 2-minute walk, with analyses focused on gait measures of spatio-temporal variability that have shown sensitivity to ataxia severity (eg, lateral step deviation). RESULTS We found significant changes for gait measures between baseline and 1-year follow-up with large effect sizes (lateral step deviation P = 0.0001, effect size rprb = 0.78), whereas the SARA score showed no change (P = 0.67). Sample size estimation indicates a required cohort size of n = 43 to detect a 50% reduction in natural progression. Test-retest reliability and minimal detectable change analysis confirm the accuracy of detecting 50% of the identified 1-year change. CONCLUSIONS Gait measures assessed by wearable sensors can capture natural progression in early-stage SCA2 within just 1 year-in contrast to a clinical ataxia outcome. Lateral step deviation represents a promising outcome measure for upcoming multicenter interventional trials, particularly in the early stages of cerebellar ataxia. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jens Seemann
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Lina Daghsen
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Matthieu Cazier
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Jean-Charles Lamy
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Marie-Laure Welter
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Martin A Giese
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience (CIN), Tübingen, Germany
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Paris, France
| |
Collapse
|
4
|
Chen XY, Lian YH, Liu XH, Sikandar A, Li MC, Xu HL, Hu JP, Chen QL, Gan SR. Effects of Repetitive Transcranial Magnetic Stimulation on Cerebellar Metabolism in Patients With Spinocerebellar Ataxia Type 3. Front Aging Neurosci 2022; 14:827993. [PMID: 35547622 PMCID: PMC9082263 DOI: 10.3389/fnagi.2022.827993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia, and, thus far, effective treatment remains low. Repetitive transcranial magnetic stimulation (rTMS) can improve the symptoms of spinal cerebellar ataxia, but the mechanism is unclear; in addition, whether any improvement in the symptoms is related to cerebellar metabolism has not yet been investigated. Therefore, the purpose of this study was to investigate the effects of low-frequency rTMS on local cerebellar metabolism in patients with SCA3 and the relationship between the improvement in the symptoms and cerebellar metabolism. Methods A double-blind, prospective, randomized, sham-controlled trial was carried out among 18 SCA3 patients. The participants were randomly assigned to the real stimulation group (n = 9) or sham stimulation group (n = 9). Each participant in both the groups underwent 30 min of 1 Hz rTMS stimulation (a total of 900 pulses), differing only in terms of stimulator placement, for 15 consecutive days. To separately compare pre- and post-stimulation data (magnetic resonance spectroscopy (MRS) data and the International Cooperative Ataxia Rating Scale (ICARS) score) in the real and sham groups, paired-sample t-tests and Wilcoxon’s signed-rank tests were used in the analyses. The differences in the ICARS and MRS data between the two groups were analyzed with independent t-tests and covariance. To explore the association between the changes in the concentration of cerebellar metabolism and ICARS, we applied Pearson’s correlation analysis. Results After 15 days of treatment, the ICARS scores significantly decreased in both the groups, while the decrease was more significant in the real stimulation group compared to the sham stimulation group (p < 0.001). The analysis of covariance further confirmed that the total ICARS scores decreased more dramatically in the real stimulation group after treatment compared to the sham stimulation group (F = 31.239, p < 0.001). The values of NAA/Cr and Cho/Cr in the cerebellar vermis, bilateral dentate nucleus, and bilateral cerebellar hemisphere increased significantly in the real stimulation group (p < 0.05), but no significant differences were found in the sham stimulation group (p > 0.05). The analysis of covariance also confirmed the greater change in the real stimulation group. This study also demonstrated that there was a negative correlation between NAA/Cr in the right cerebellar hemisphere and ICARS in the real stimulation group (r = − 0.831, p = 0.02). Conclusion The treatment with rTMS over the cerebellum was found to induce changes in the cerebellar local metabolism and microenvironment in the SCA3 patients. The alterations may contribute to the improvement of the symptoms of ataxia in SCA3 patients.
Collapse
Affiliation(s)
- Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan-Hua Lian
- The School of Health, Fujian Medical University, Fuzhou, China
| | - Xia-Hua Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Arif Sikandar
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meng-Cheng Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao-Ling Xu
- Department of Neurology, The 900th Hospital of Joint Logistics Support Force of PLA, Fuzhou, China
| | - Jian-Ping Hu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qun-Lin Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Qun-Lin Chen,
| | - Shi-Rui Gan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Shi-Rui Gan,
| |
Collapse
|
5
|
Kim DH, Kim R, Lee JY, Lee KM. Clinical, Imaging, and Laboratory Markers of Premanifest Spinocerebellar Ataxia 1, 2, 3, and 6: A Systematic Review. J Clin Neurol 2021; 17:187-199. [PMID: 33835738 PMCID: PMC8053554 DOI: 10.3988/jcn.2021.17.2.187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Premanifest mutation carriers with spinocerebellar ataxia (SCA) can exhibit subtle abnormalities before developing ataxia. We summarized the preataxic manifestations of SCA1, -2, -3, and -6, and their associations with ataxia onset. Methods We included studies of the premanifest carriers of SCA published between January 1998 and December 2019 identified in Scopus and PubMed by searching for terms including ‘spinocerebellar ataxia’ and several synonyms of ‘preataxic manifestation’. We systematically reviewed the results obtained in studies categorized based on clinical, imaging, and laboratory markers. Results We finally performed a qualitative analysis of 48 papers. Common preataxic manifestations appearing in multiple SCA subtypes were muscle cramps, abnormal muscle reflexes, instability in gait and posture, lower Composite Cerebellar Functional Severity scores, abnormalities in video-oculography and transcranial magnetic stimulation, and gray-matter loss and volume reduction in the brainstem and cerebellar structures. Also, decreased sensory amplitudes in nerve conduction studies were observed in SCA2. Eotaxin and neurofilament light-chain levels were revealed as sensitive blood biomarkers in SCA3. Concerning potential predictive markers, hyporeflexia and abnormalities of somatosensory evoked potentials showed correlations with the time to ataxia onset in SCA2 carriers. However, no longitudinal data were found for the other SCA gene carriers. Conclusions Our results suggest that preataxic manifestations vary among SCA1, -2, -3, and -6, with some subtypes sharing specific features. Combining various markers into a standardized index for premanifest carriers may be useful for early screening and assessing the risk of disease progression in SCA carriers.
Collapse
Affiliation(s)
- Dong Hoi Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Jee Young Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyoung Min Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Choi JH, Shin C, Kim HJ, Jeon B. Placebo response in degenerative cerebellar ataxias: a descriptive review of randomized, placebo-controlled trials. J Neurol 2020; 269:62-71. [PMID: 33219422 DOI: 10.1007/s00415-020-10306-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
Placebo response in degenerative cerebellar ataxias (CAs) has never been studied despite the large number of randomized controlled trials (RCTs) that have been conducted. In this descriptive review, we aimed to examine the placebo response in patients with CAs. We performed a literature search on PubMed for RCTs on CAs that were published from 1977 to January 2020 and collected data on the changes from the baseline to the endpoint on various objective ataxia-associated clinical rating scales. We reviewed 56 clinical trials, finally including 35 parallel-group studies and excluding 21 cross-over studies. The included studies were categorized as follows: (1) studies showing significant improvements in one or more ataxia scales in the placebo groups (n = 3); (2) studies reporting individual placebo responders with improvements in one or more ataxia scales in the placebo groups (n = 5)-the overall proportion of placebo responders was 31.9%; (3) studies showing mean changes in the direction of improvement in at least one ataxia scale in the placebo groups, though not statistically significant (n = 19); (4) studies showing no placebo response in any of the ataxia scales in the placebo groups (n = 4); (5) studies where data on the placebo groups were unavailable (n = 9). This review demonstrated the placebo response in patients with CAs on various objective ataxia scales. Our study emphasizes that the placebo response should be considered when designing, analyzing, and interpreting clinical trials and in clinical practice in CA patients.
Collapse
Affiliation(s)
- Ji-Hyun Choi
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Chaewon Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong-si, South Korea.,Department of Neurology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
7
|
Rodríguez-Labrada R, Martins AC, Magaña JJ, Vazquez-Mojena Y, Medrano-Montero J, Fernandez-Ruíz J, Cisneros B, Teive H, McFarland KN, Saraiva-Pereira ML, Cerecedo-Zapata CM, Gomez CM, Ashizawa T, Velázquez-Pérez L, Jardim LB. Founder Effects of Spinocerebellar Ataxias in the American Continents and the Caribbean. CEREBELLUM (LONDON, ENGLAND) 2020; 19:446-458. [PMID: 32086717 PMCID: PMC11578058 DOI: 10.1007/s12311-020-01109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinocerebellar ataxias (SCAs) comprise a heterogeneous group of autosomal dominant disorders. The relative frequency of the different SCA subtypes varies broadly among different geographical and ethnic groups as result of genetic drifts. This review aims to provide an update regarding SCA founders in the American continents and the Caribbean as well as to discuss characteristics of these populations. Clusters of SCAs were detected in Eastern regions of Cuba for SCA2, in South Brazil for SCA3/MJD, and in Southeast regions of Mexico for SCA7. Prevalence rates were obtained and reached 154 (municipality of Báguano, Cuba), 166 (General Câmara, Brazil), and 423 (Tlaltetela, Mexico) patients/100,000 for SCA2, SCA3/MJD, and SCA7, respectively. In contrast, the scattered families with spinocerebellar ataxia type 10 (SCA10) reported all over North and South Americas have been associated to a common Native American ancestry that may have risen in East Asia and migrated to Americas 10,000 to 20,000 years ago. The comprehensive review showed that for each of these SCAs corresponded at least the development of one study group with a large production of scientific evidence often generalizable to all carriers of these conditions. Clusters of SCA populations in the American continents and the Caribbean provide unusual opportunity to gain insights into clinical and genetic characteristics of these disorders. Furthermore, the presence of large populations of patients living close to study centers can favor the development of meaningful clinical trials, which will impact on therapies and on quality of life of SCA carriers worldwide.
Collapse
Affiliation(s)
| | - Ana Carolina Martins
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91540-070, Brazil
| | - Jonathan J Magaña
- Department of Genetics, Laboratory of Genomic Medicine, National Rehabilitation Institute (INR-LGII), 14389, Mexico City, Mexico
| | - Yaimeé Vazquez-Mojena
- Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100, Holguín, Cuba
| | | | - Juan Fernandez-Ruíz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, 04510, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Helio Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas Federal University of Paraná, Curitiba, PR, 80240-440, Brazil
| | | | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91540-070, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, 90035-903, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-903, Brazil
| | - César M Cerecedo-Zapata
- Department of Genetics, Laboratory of Genomic Medicine, National Rehabilitation Institute (INR-LGII), 14389, Mexico City, Mexico
- Rehabilitation and Social Inclusion Center of Veracruz (CRIS-DIF), Xalapa, 91070, Veracruz, Mexico
| | | | - Tetsuo Ashizawa
- Program of Neuroscience, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Luis Velázquez-Pérez
- Centre for the Research and Rehabilitation of Hereditary Ataxias, 80100, Holguín, Cuba.
- Cuban Academy of Sciences, 10100, La Havana, Cuba.
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91540-070, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, 90035-903, Brazil
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-903, Brazil
| |
Collapse
|
8
|
Da Silva JD, Teixeira-Castro A, Maciel P. From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics 2019; 16:1009-1031. [PMID: 31691128 PMCID: PMC6985322 DOI: 10.1007/s13311-019-00798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a neurodegenerative disorder caused by a polyglutamine expansion in the ATXN3 gene. In spite of the identification of a clear monogenic cause 25 years ago, the pathological process still puzzles researchers, impairing prospects for an effective therapy. Here, we propose the disruption of protein homeostasis as the hub of SCA3 pathogenesis, being the molecular mechanisms and cellular pathways that are deregulated in SCA3 downstream consequences of the misfolding and aggregation of ATXN3. Moreover, we attempt to provide a realistic perspective on how the translational/clinical research in SCA3 should evolve. This was based on molecular findings, clinical and epidemiological characteristics, studies of proposed treatments in other conditions, and how that information is essential for their (re-)application in SCA3. This review thus aims i) to critically evaluate the current state of research on SCA3, from fundamental to translational and clinical perspectives; ii) to bring up the current key questions that remain unanswered in this disorder; and iii) to provide a frame on how those answers should be pursued.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
9
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|