1
|
Understanding hippocampal neural plasticity in captivity: Unique contributions of spatial specialists. Learn Behav 2022; 50:55-70. [PMID: 35237946 DOI: 10.3758/s13420-021-00504-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
Neural plasticity in the hippocampus has been studied in a wide variety of model systems, including in avian species where the hippocampus underlies specialized spatial behaviours. Examples of such behaviours include navigating to a home roost over long distances by homing pigeons or returning to a potential nest site for egg deposit by brood parasites. The best studied example, however, is food storing in parids and the interaction between this behaviour and changes in hippocampus volume and neurogenesis. However, understanding the interaction between brain and behaviour necessitates research that includes studies with at least some form of captivity, which may itself affect hippocampal plasticity. Captivity might particularly affect spatial specialists where free-ranging movement on a large scale is especially important in daily, and seasonal, behaviours. This review examines how captivity might affect hippocampal plasticity in avian spatial specialists and specifically food-storing parids, and also considers how the effects of captivity may be mitigated by researchers studying hippocampal plasticity when the goal is understanding the relationship between behaviour and hippocampal change.
Collapse
|
2
|
Lambert CT, Balasubramanian G, Camacho-Alpízar A, Guillette LM. Do sex differences in construction behavior relate to differences in physical cognitive abilities? Anim Cogn 2021; 25:605-615. [PMID: 34797462 DOI: 10.1007/s10071-021-01577-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Nest-building behaviour in birds may be particularly relevant to investigating the evolution of physical cognition, as nest building engages cognitive mechanisms for the use and manipulation of materials. We hypothesized that nest-building ecology may be related to physical cognitive abilities. To test our hypothesis, we used zebra finches, which have sex-differentiated roles in nest building. We tested 16 male and 16 female zebra finches on three discrimination tasks in the following order: length discrimination, flexibility discrimination, and color discrimination, using different types of string. We predicted that male zebra finches, which select and deposit the majority of nesting material and are the primary nest builders in this species, would learn to discriminate string length and flexibility-structural traits relevant to nest building-in fewer trials compared to females, but that the sexes would learn color discrimination (not structurally relevant to nest building) in a similar number of trials. Contrary to these predictions, male and female zebra finches did not differ in their speed to learn any of the three tasks. There was, however, consistent among-individual variation in performance: learning speed was positively correlated across the tasks. Our findings suggest that male and female zebra finches either (1) do not differ in their physical cognitive abilities, or (2) any cognitive sex differences in zebra finches are more specific to tasks more closely associated with nest building. Our experiment is the first to examine the potential evolutionary relationship between nest building and physical cognitive abilities.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | | | | | - Lauren M Guillette
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
3
|
Jacob J, Kent M, Benson-Amram S, Herculano-Houzel S, Raghanti MA, Ploppert E, Drake J, Hindi B, Natale NR, Daniels S, Fanelli R, Miller A, Landis T, Gilbert A, Johnson S, Lai A, Hyer M, Rzucidlo A, Anchor C, Gehrt S, Lambert K. Cytoarchitectural characteristics associated with cognitive flexibility in raccoons. J Comp Neurol 2021; 529:3375-3388. [PMID: 34076254 DOI: 10.1002/cne.25197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023]
Abstract
With rates of psychiatric illnesses such as depression continuing to rise, additional preclinical models are needed to facilitate translational neuroscience research. In the current study, the raccoon (Procyon lotor) was investigated due to its similarities with primate brains, including comparable proportional neuronal densities, cortical magnification of the forepaw area, and cortical gyrification. Specifically, we report on the cytoarchitectural characteristics of raccoons profiled as high, intermediate, or low solvers in a multiaccess problem-solving task. Isotropic fractionation indicated that high-solvers had significantly more cells in the hippocampus (HC) than the other solving groups; further, a nonsignificant trend suggested that this increase in cell profile density was due to increased nonneuronal (e.g., glial) cells. Group differences were not observed in the cellular density of the somatosensory cortex. Thionin-based staining confirmed the presence of von Economo neurons (VENs) in the frontoinsular cortex, although no impact of solving ability on VEN cell profile density levels was observed. Elongated fusiform cells were quantified in the HC dentate gyrus where high-solvers were observed to have higher levels of this cell type than the other solving groups. In sum, the current findings suggest that varying cytoarchitectural phenotypes contribute to cognitive flexibility. Additional research is necessary to determine the translational value of cytoarchitectural distribution patterns on adaptive behavioral outcomes associated with cognitive performance and mental health.
Collapse
Affiliation(s)
- Joanna Jacob
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Molly Kent
- Department of Biology, Virginia Military Institute, Lexington, Virginia, USA
| | - Sarah Benson-Amram
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Emily Ploppert
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Jack Drake
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Bilal Hindi
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Nick R Natale
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Sarah Daniels
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Rachel Fanelli
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Anderson Miller
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Tim Landis
- Department of Psychology, Randolph-Macon College, Ashland, Virginia, USA
| | - Amy Gilbert
- USDA-APHIS-WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Shylo Johnson
- USDA-APHIS-WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Annie Lai
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| | - Molly Hyer
- Department of Psychology, Randolph-Macon College, Ashland, Virginia, USA
| | - Amanda Rzucidlo
- Forest Preserve District of Cook County, River Forest, Illinois, USA
| | - Chris Anchor
- Forest Preserve District of Cook County, River Forest, Illinois, USA
| | - Stan Gehrt
- School of Environment and Natural Resources, Ohio State University, Columbus, Ohio, USA
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, Virginia, USA
| |
Collapse
|
4
|
Lois-Milevicich J, Kacelnik A, Reboreda JC. Sex differences in the use of spatial cues in two avian brood parasites. Anim Cogn 2020; 24:205-212. [PMID: 32980971 DOI: 10.1007/s10071-020-01434-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 09/18/2020] [Indexed: 02/04/2023]
Abstract
Shiny and screaming cowbirds are avian interspecific brood parasites that locate and prospect host nests in daylight and return from one to several days later to lay an egg during the pre-dawn twilight. Thus, during nest location and prospecting, both location information and visual features are available, but the latter become less salient in the low-light conditions when the nests are visited for laying. This raises the question of how these different sources of information interact, and whether this reflects different behavioural specializations across sexes. Differences are expected, because in shiny cowbirds, females act alone, but in screaming cowbirds, both sexes make exploratory and laying nest visits together. We trained females and males of shiny and screaming cowbird to locate a food source signalled by both colour and position (cues associated), and evaluated performance after displacing the colour cue to make it misleading (cues dissociated). There were no sex or species differences in acquisition performance while the cues were associated. When the colour cue was relocated, individuals of both sexes and species located the food source making fewer visits to non-baited wells than expected by chance, indicating that they all retained the position as an informative cue. In this phase, however, shiny cowbird females, but not screaming, outperformed conspecific males, visiting fewer non-baited wells before finding the food location and making straighter paths in the search. These results are consistent with a greater reliance on spatial memory, as expected from the shiny cowbird female's specialization on nest location behaviour.
Collapse
Affiliation(s)
- Jimena Lois-Milevicich
- Departamento de Ecología, Genética y Evolución & IEGEBA - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Alex Kacelnik
- Department of Zoology, University of Oxford, Oxford, UK
| | - Juan Carlos Reboreda
- Departamento de Ecología, Genética y Evolución & IEGEBA - CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Haave-Audet E, Guillette LM, Mathot KJ. Context is key: A comment on Herczeg et al. 2019. J Evol Biol 2019; 32:1444-1449. [PMID: 31420908 DOI: 10.1111/jeb.13520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/17/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
In the last several years, there has been a surge in the number of studies addressing the causes and consequences of among-individual variation in cognitive ability and behavioural plasticity. Here, we use a recent publication by Herczeg et al. (2019: 32(3), 218-226) to highlight three shortcomings common to this newly emerging field. In their study, Herczeg et al. attempted to link variation in cognitive ability and behavioural plasticity by testing whether selection lines of guppies (Poecilia reticulata) that differ in relative brain size also differ in behavioural plasticity, as might be expected if the costs to plasticity are predominantly derived from the cost of developing large brains. First, residual brain size may not be a suitable proxy for 'cognitive ability'. Recent work has shown that intraspecific variation in cognitive ability can be better understood by considering variation in the specific brain areas responsible for the relevant behaviours as opposed to whole-brain mass. Second, the measure of behavioural plasticity, habituation, is unlikely to fulfil the assumptions that plasticity is both adaptive and costly. Finally, we point out several misconceptions regarding animal personality that continue to contribute to the choice of traits that are not well aligned with study objectives. Elucidating the mechanisms underlying among-individual variation in cognition and behavioural plasticity within populations requires integration between behavioural ecology and comparative cognition, and the study system developed by Herczeg et al. has the potential to provide important mechanistic insights. We hope that by articulating and critically appraising the underlying assumptions that are common in these traditionally separate disciplines, a strong foundation can emerge to allow for more fruitful integration of these fields.
Collapse
Affiliation(s)
- Elène Haave-Audet
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, Edmonton, AB, Canada.,School of Biology, University of St Andrews, St Andrews, UK
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Canada Research Chair in Integrative Ecology, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|