1
|
Dousti M, Parsa S, Sani F, Bagherzadeh E, Zamanzadeh Z, Dara M, Sani M, Azarpira N. Enhancing bone regeneration: Unleashing the potential of magnetic nanoparticles in a microtissue model. J Cell Mol Med 2024; 28:e70040. [PMID: 39219020 PMCID: PMC11366680 DOI: 10.1111/jcmm.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three-dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super-paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co-culture of Human umbilical vein endothelial cells (HUVEC) and MG-63 cells as a model of bone microtissue. HUVECs: MG-63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis-related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen-I, as well as the expression of the angiogenesis-related marker, CD-31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co-culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior-performance implants, preventing device failure.
Collapse
Affiliation(s)
- Maryam Dousti
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Department of Genetics, Faculty of Biological Sciences and TechnologyShahid Ashrafi Esfahani UniversityIsfahanIran
| | - Shima Parsa
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
| | - Farnaz Sani
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
| | | | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and TechnologyShahid Ashrafi Esfahani UniversityIsfahanIran
| | - Mahintaj Dara
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Tissue Engineering Department, School of Advanced Medical Science and TechnologyShiraz University of Medical ScienceShirazIran
| | - Negar Azarpira
- Shiraz Institute for Stem Cell and Regenerative MedicineShiraz University of Medical ScienceShirazIran
- Transplant Research CenterShiraz University of Medical ScienceShirazIran
| |
Collapse
|
2
|
Wei X, Jiang X, Li H. Fundamental characteristics of ultrasonic green formulations using Avena sativa L. extract-mediated gold nanoparticles and electroconductive nanofibers for cardiovascular nursing care. Heliyon 2024; 10:e35018. [PMID: 39170527 PMCID: PMC11336310 DOI: 10.1016/j.heliyon.2024.e35018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
In the pursuit of novel approaches to address chronic heart failure and enhance cardiovascular nursing care, environmentally sustainable nanomaterials have taken center stage. Recent progress in regenerative medicine has opened doors for the use of biocompatible biomaterials that provide mechanical support to damaged heart tissue and facilitate electrical signaling. This study was dedicated to developing advanced electroconductive nanofibers by incorporating eco-friendly Avena sativa L. extract-mediated gold nanoparticles (AuNPs) into polyaniline to create an intricate cardiac patch. The AuNPs were synthesized through an environmentally friendly chemical process aided by ultrasonic conditions. Comprehensive physicochemical analyses, such as UV-Vis spectroscopy, SEM, TEM, DPPH assay, and XRD, were carried out to characterize the AuNPs. These AuNPs were then blended with a polycaprolactone/gelatin polymeric solution and electrospun to fabricate cardiac patches, which underwent thorough evaluation using various techniques. The resulting cardiac patch demonstrated excellent hemocompatibility, antioxidant properties, and cytocompatibility, offering a promising therapeutic approach for myocardial infarctions and the advancement of cardiovascular nursing care.
Collapse
Affiliation(s)
- Xinfang Wei
- Department of Cardiovascular Medicine CCU, Zhongshan People's Hospital, No. 2 Sunwendong Road, Zhongshan City, Guangdong, 528403, China
| | - Xiaoshan Jiang
- Department of Geriatrics, Qingdao Chengyang District People's Hospital, No. 600, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong Province, China
| | - Hongzan Li
- School of Nursing, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake Science and Technology Park, Dongguan, Guangdong, 523808, China
| |
Collapse
|
3
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
4
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Bianchi E, Vigani B, Viseras C, Ferrari F, Rossi S, Sandri G. Inorganic Nanomaterials in Tissue Engineering. Pharmaceutics 2022; 14:1127. [PMID: 35745700 PMCID: PMC9231279 DOI: 10.3390/pharmaceutics14061127] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
In recent decades, the demand for replacement of damaged or broken tissues has increased; this poses the attention on problems related to low donor availability. For this reason, researchers focused their attention on the field of tissue engineering, which allows the development of scaffolds able to mimic the tissues' extracellular matrix. However, tissue replacement and regeneration are complex since scaffolds need to guarantee an adequate hierarchical structured morphology as well as adequate mechanical, chemical, and physical properties to stand the stresses and enhance the new tissue formation. For this purpose, the use of inorganic materials as fillers for the scaffolds has gained great interest in tissue engineering applications, due to their wide range of physicochemical properties as well as their capability to induce biological responses. However, some issues still need to be faced to improve their efficacy. This review focuses on the description of the most effective inorganic nanomaterials (clays, nano-based nanomaterials, metal oxides, metallic nanoparticles) used in tissue engineering and their properties. Particular attention has been devoted to their combination with scaffolds in a wide range of applications. In particular, skin, orthopaedic, and neural tissue engineering have been considered.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain;
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (B.V.)
| |
Collapse
|
6
|
Wang Y, Gao Z, Han Z, Liu Y, Yang H, Akkin T, Hogan CJ, Bischof JC. Aggregation affects optical properties and photothermal heating of gold nanospheres. Sci Rep 2021; 11:898. [PMID: 33441620 PMCID: PMC7806971 DOI: 10.1038/s41598-020-79393-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Laser heating of gold nanospheres (GNS) is increasingly prevalent in biomedical applications due to tunable optical properties that determine heating efficiency. Although many geometric parameters (i.e. size, morphology) can affect optical properties of individual GNS and their heating, no specific studies of how GNS aggregation affects heating have been carried out. We posit here that aggregation, which can occur within some biological systems, will significantly impact the optical and therefore heating properties of GNS. To address this, we employed discrete dipole approximation (DDA) simulations, Ultraviolet-Visible spectroscopy (UV-Vis) and laser calorimetry on GNS primary particles with diameters (5, 16, 30 nm) and their aggregates that contain 2 to 30 GNS particles. DDA shows that aggregation can reduce the extinction cross-section on a per particle basis by 17-28%. Experimental measurement by UV-Vis and laser calorimetry on aggregates also show up to a 25% reduction in extinction coefficient and significantly lower heating (~ 10%) compared to dispersed GNS. In addition, comparison of select aggregates shows even larger extinction cross section drops in sparse vs. dense aggregates. This work shows that GNS aggregation can change optical properties and reduce heating and provides a new framework for exploring this effect during laser heating of nanomaterial solutions.
Collapse
Affiliation(s)
- Yiru Wang
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Zhe Gao
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Zonghu Han
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Huan Yang
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Taner Akkin
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Mousavi A, Vahdat S, Baheiraei N, Razavi M, Norahan MH, Baharvand H. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomater Sci Eng 2020; 7:55-82. [PMID: 33320525 DOI: 10.1021/acsbiomaterials.0c01422] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for discussion. In the present review, we classify and summarize the unique properties of conductive biomaterials considered beneficial for cardiac tissue engineering. We attempt to cover recent advances in conductive biomaterials with a particular focus on their effects on cardiac cell functions and proposed mechanisms of action. Finally, current problems, limitations, challenges, and suggested solutions for applications of these biomaterials are presented.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Sadaf Vahdat
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, 14117-13116 Tehran, Iran
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, Florida 32816, United States
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Department of Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, México
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 1665659911 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
8
|
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, Jafari A, Radinekiyan F, Hashemi SM, Ahmadpour F, Behboudi A, Mosafer J, Mokhtarzadeh A, Maleki A, Hamblin MR. Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020; 14:1687-1714. [PMID: 32914573 DOI: 10.1002/term.3131] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Tissue is vital to the organization of multicellular organisms, because it creates the different organs and provides the main scaffold for body shape. The quest for effective methods to allow tissue regeneration and create scaffolds for new tissue growth has intensified in recent years. Tissue engineering has recently used some promising alternatives to existing conventional scaffold materials, many of which have been derived from nanotechnology. One important example of these is metal nanoparticles. The purpose of this review is to cover novel tissue engineering methods, paying special attention to those based on the use of metal-based nanoparticles. The unique physiochemical properties of metal nanoparticles, such as antibacterial effects, shape memory phenomenon, low cytotoxicity, stimulation of the proliferation process, good mechanical and tensile strength, acceptable biocompatibility, significant osteogenic potential, and ability to regulate cell growth pathways, suggest that they can perform as novel types of scaffolds for bone tissue engineering. The basic principles of various nanoparticle-based composites and scaffolds are discussed in this review. The merits and demerits of these particles are critically discussed, and their importance in bone tissue engineering is highlighted.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Farnoush Ahmadpour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Behboudi
- Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|
10
|
Mârza SM, Magyari K, Bogdan S, Moldovan M, Peştean C, Nagy A, Tăbăran F, Licarete E, Suarasan S, Dreanca A, Baia L, Papuc I. Skin wound regeneration with bioactive glass-gold nanoparticles ointment. ACTA ACUST UNITED AC 2019; 14:025011. [PMID: 30630137 DOI: 10.1088/1748-605x/aafd7d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bioactive glasses can lead to the promotion of growth of granulation tissue, while the gold nanoparticles (AuNPs) can induce the acceleration of wound healing including tissue regeneration, connective tissue formation, and angiogenesis. The aim of this study was to evaluate the impact of using the bioactive glass (BG) and BG-AuNPs composites on skin wound healing in experimental rat models for 14 days. Sol-gel derived BGs and BG-AuNPs composites mixed with Vaseline at 6, 12 and 18 wt% were used to evaluate the repair response of the skin. During the process of healing, granulomatous reaction was observed in the wound treated with 12 and 18 wt% BG-Vaseline ointments. Furthermore, a strong vascular proliferation and complete wound regeneration were found in 18%BG-AuNPs-Vaseline treated groups. The results derived from the performed investigations revealed that the 18% BG-AuNPs-Vaseline ointment is a promising candidate for wound healing applications.
Collapse
Affiliation(s)
- S M Mârza
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania. Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|