1
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
2
|
Hosaka T, Tsuji H, Kwak S. Roles of Aging, Circular RNAs, and RNA Editing in the Pathogenesis of Amyotrophic Lateral Sclerosis: Potential Biomarkers and Therapeutic Targets. Cells 2023; 12:1443. [PMID: 37408276 DOI: 10.3390/cells12101443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable motor neuron disease caused by upper and lower motor neuron death. Despite advances in our understanding of ALS pathogenesis, effective treatment for this fatal disease remains elusive. As aging is a major risk factor for ALS, age-related molecular changes may provide clues for the development of new therapeutic strategies. Dysregulation of age-dependent RNA metabolism plays a pivotal role in the pathogenesis of ALS. In addition, failure of RNA editing at the glutamine/arginine (Q/R) site of GluA2 mRNA causes excitotoxicity due to excessive Ca2+ influx through Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, which is recognized as an underlying mechanism of motor neuron death in ALS. Circular RNAs (circRNAs), a circular form of cognate RNA generated by back-splicing, are abundant in the brain and accumulate with age. Hence, they are assumed to play a role in neurodegeneration. Emerging evidence has demonstrated that age-related dysregulation of RNA editing and changes in circRNA expression are involved in ALS pathogenesis. Herein, we review the potential associations between age-dependent changes in circRNAs and RNA editing, and discuss the possibility of developing new therapies and biomarkers for ALS based on age-related changes in circRNAs and dysregulation of RNA editing.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- University of Tsukuba Hospital/Jichi Medical University Joint Ibaraki Western Regional Clinical Education Center, Chikusei 308-0813, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Tokyo 160-0023, Japan
| |
Collapse
|
3
|
Hosaka T, Tsuji H, Kwak S. RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Int J Mol Sci 2021; 22:10958. [PMID: 34681616 PMCID: PMC8536083 DOI: 10.3390/ijms222010958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
The conversion of adenosine to inosine in RNA editing (A-to-I RNA editing) is recognized as a critical post-transcriptional modification of RNA by adenosine deaminases acting on RNAs (ADARs). A-to-I RNA editing occurs predominantly in mammalian and human central nervous systems and can alter the function of translated proteins, including neurotransmitter receptors and ion channels; therefore, the role of dysregulated RNA editing in the pathogenesis of neurological diseases has been speculated. Specifically, the failure of A-to-I RNA editing at the glutamine/arginine (Q/R) site of the GluA2 subunit causes excessive permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to Ca2+, inducing fatal status epilepticus and the neurodegeneration of motor neurons in mice. Therefore, an RNA editing deficiency at the Q/R site in GluA2 due to the downregulation of ADAR2 in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients suggests that Ca2+-permeable AMPA receptors and the dysregulation of RNA editing are suitable therapeutic targets for ALS. Gene therapy has recently emerged as a new therapeutic opportunity for many heretofore incurable diseases, and RNA editing dysregulation can be a target for gene therapy; therefore, we reviewed neurological diseases associated with dysregulated RNA editing and a new therapeutic approach targeting dysregulated RNA editing, especially one that is effective in ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
- Department of Internal Medicine, Tsukuba University Hospital Kensei Area Medical Education Center, Chikusei 308-0813, Ibaraki, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Ibaraki, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
4
|
Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev Cell 2021; 55:45-68. [PMID: 33049211 DOI: 10.1016/j.devcel.2020.09.014] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Protein aggregation is the main hallmark of neurodegenerative diseases. Many proteins found in pathological inclusions are known to undergo liquid-liquid phase separation, a reversible process of molecular self-assembly. Emerging evidence supports the hypothesis that aberrant phase separation behavior may serve as a trigger of protein aggregation in neurodegeneration, and efforts to understand and control the underlying mechanisms are underway. Here, we review similarities and differences among four main proteins, α-synuclein, FUS, tau, and TDP-43, which are found aggregated in different diseases and were independently shown to phase separate. We discuss future directions in the field that will help shed light on the molecular mechanisms of aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Aurélie Zbinden
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Manuela Pérez-Berlanga
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Magdalini Polymenidou
- Department of Quantitative Biomedicine, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
5
|
Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249582. [PMID: 33339180 PMCID: PMC7765627 DOI: 10.3390/ijms21249582] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.
Collapse
|
6
|
Hanan M, Simchovitz A, Yayon N, Vaknine S, Cohen‐Fultheim R, Karmon M, Madrer N, Rohrlich TM, Maman M, Bennett ER, Greenberg DS, Meshorer E, Levanon EY, Soreq H, Kadener S. A Parkinson's disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med 2020; 12:e11942. [PMID: 32715657 PMCID: PMC7507321 DOI: 10.15252/emmm.201911942] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are brain-abundant RNAs of mostly unknown functions. To seek their roles in Parkinson's disease (PD), we generated an RNA sequencing resource of several brain region tissues from dozens of PD and control donors. In the healthy substantia nigra (SN), circRNAs accumulate in an age-dependent manner, but in the PD SN this correlation is lost and the total number of circRNAs reduced. In contrast, the levels of circRNAs are increased in the other studied brain regions of PD patients. We also found circSLC8A1 to increase in the SN of PD individuals. CircSLC8A1 carries 7 binding sites for miR-128 and is strongly bound to the microRNA effector protein Ago2. Indeed, RNA targets of miR-128 are also increased in PD individuals, suggesting that circSLC8A1 regulates miR-128 function and/or activity. CircSLC8A1 levels also increased in cultured cells exposed to the oxidative stress-inducing agent paraquat but were decreased in cells treated with the neuroprotective antioxidant regulator drug Simvastatin. Together, our work links circSLC8A1 to oxidative stress-related Parkinsonism and suggests further exploration of its molecular function in PD.
Collapse
Affiliation(s)
- Mor Hanan
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Alon Simchovitz
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Nadav Yayon
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Shani Vaknine
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Roni Cohen‐Fultheim
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Miriam Karmon
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Nimrod Madrer
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Talia Miriam Rohrlich
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Moria Maman
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Estelle R Bennett
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - David S Greenberg
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Eran Meshorer
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Department of GeneticsThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Hermona Soreq
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Sebastian Kadener
- Department of Biological ChemistryThe Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
- Biology DepartmentBrandeis UniversityWalthamMAUSA
| |
Collapse
|
7
|
Sladek AL, Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front Synaptic Neurosci 2020; 12:30. [PMID: 32792936 PMCID: PMC7393603 DOI: 10.3389/fnsyn.2020.00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
AMPA-type glutamate receptors in the CNS are normally impermeable to Ca2+, but the aberrant expression of Ca2+-permeable AMPA receptors (CP-AMPARs) occurs in pathological conditions such as ischemia or epilepsy, or degenerative diseases such as ALS. Here, we show that select populations of retinal ganglion cells (RGCs) similarly express high levels of CP-AMPARs in a mouse model of glaucoma. CP-AMPAR expression increased dramatically in both On sustained alpha and Off transient alpha RGCs, and this increase was prevented by genomic editing of the GluA2 subunit. On sustained alpha RGCs with elevated CP-AMPAR levels displayed profound synaptic depression, which was reduced by selectively blocking CP-AMPARs, buffering Ca2+ with BAPTA, or with the CB1 antagonist AM251, suggesting that depression was mediated by a retrograde transmitter which might be triggered by the influx of Ca2+ through CP-AMPARs. Thus, glaucoma may alter the composition of AMPARs and depress excitatory synaptic input in select populations of RGCs.
Collapse
Affiliation(s)
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Moore S, Rabichow BE, Sattler R. The Hitchhiker's Guide to Nucleocytoplasmic Trafficking in Neurodegeneration. Neurochem Res 2020; 45:1306-1327. [PMID: 32086712 DOI: 10.1007/s11064-020-02989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The widespread nature of nucleocytoplasmic trafficking defects and protein accumulation suggests distinct yet overlapping mechanisms in a variety of neurodegenerative diseases. Detailed understanding of the cellular pathways involved in nucleocytoplasmic transport and its dysregulation are essential for elucidating neurodegenerative pathogenesis and pinpointing potential areas for therapeutic intervention. The transport of cargos from the nucleus to the cytoplasm is generally regulated by the structure and function of the nuclear pore as well as the karyopherin α/β, importin, exportin, and mRNA export mechanisms. The disruption of these crucial transport mechanisms has been extensively described in the context of neurodegenerative diseases. One common theme in neurodegeneration is the cytoplasmic aggregation of proteins, including nuclear RNA binding proteins, repeat expansion associated gene products, and tau. These cytoplasmic aggregations are partly a consequence of failed nucleocytoplasmic transport machinery, but can also further disrupt transport, creating cyclical feed-forward mechanisms that exacerbate neurodegeneration. Here we describe the canonical mechanisms that regulate nucleocytoplasmic trafficking as well as how these mechanisms falter in neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephen Moore
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Benjamin E Rabichow
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
9
|
Moore S, Alsop E, Lorenzini I, Starr A, Rabichow BE, Mendez E, Levy JL, Burciu C, Reiman R, Chew J, Belzil VV, W. Dickson D, Robertson J, Staats KA, Ichida JK, Petrucelli L, Van Keuren-Jensen K, Sattler R. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol 2019; 138:49-65. [PMID: 30945056 DOI: 10.1007/s00401-019-01999-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
The hexanucleotide repeat expansion GGGGCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.
Collapse
|
10
|
Kung CP, Maggi LB, Weber JD. The Role of RNA Editing in Cancer Development and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:762. [PMID: 30619092 PMCID: PMC6305585 DOI: 10.3389/fendo.2018.00762] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022] Open
Abstract
Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago. RNA editing alters RNA sequence without altering the sequence or integrity of genomic DNA. The most common RNA editing events are A-to-I changes mediated by adenosine deaminase acting on RNA (ADAR), and C-to-U editing mediated by apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1). Both A-to-I and C-to-U editing were first identified in the context of embryonic development and physiological homeostasis. The role of RNA editing in human disease has only recently started to be understood. In this review, the impact of RNA editing on the development of cancer and metabolic disorders will be examined. Distinctive functions of each RNA editase that regulate either A-to-I or C-to-U editing will be highlighted in addition to pointing out important regulatory mechanisms governing these processes. The potential of developing novel therapeutic approaches through intervention of RNA editing will be explored. As the role of RNA editing in human disease is elucidated, the clinical utility of RNA editing targeted therapies will be needed. This review aims to serve as a bridge of information between past findings and future directions of RNA editing in the context of cancer and metabolic disease.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Leonard B. Maggi
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jason D. Weber
- ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
- Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|