1
|
Zhou W, Shi W, Soltis PS, Soltis DE, Xiang QY(J. Foliar endophyte diversity in Eastern Asian-Eastern North American disjunct tree species - influences of host identity, environment, phylogeny, and geographic isolation. FRONTIERS IN PLANT SCIENCE 2023; 14:1274746. [PMID: 38192694 PMCID: PMC10773735 DOI: 10.3389/fpls.2023.1274746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 01/10/2024]
Abstract
Introduction The well-known eastern Asian (EA) and eastern North American (ENA) floristic disjunction provides a unique system for biogeographic and evolutionary studies. Despite considerable interest in the disjunction, few studies have investigated the patterns and their underlying drivers of allopatric divergence in sister species or lineages isolated in the two areas. Endophyte diversity and assembly in disjunct sister taxa, as an ecological trait, may have played an important role in the processes of allopatric evolution, but no studies have examined endophytes in these lineages. Here we compared foliar endophytic fungi and bacteria-archaea (FEF and FEB) in 17 EA-ENA disjunct species or clade pairs from genera representing conifers and 10 orders of five major groups of angiosperms and 23 species of Cornus from EA and North America. Methods Metagenomic sequencing of fungal ITS and bacterial-archaeal 16S rDNA was used to capture the foliar endophytic communities. Alpha and beta diversity of fungi and bacteria were compared at multiple scales and dimensions to gain insights into the relative roles of historical geographic isolation, host identity, phylogeny, and environment from samples at different sites in shaping endophytic diversity patterns. Results We found that beta diversity of endophytes varied greatly among plant individuals within species and between species among genera at the same sampling site, and among three sampling sites, but little variation between region-of-origin of all plant species (EA vs ENA) and between EA-ENA disjunct counterparts within genera. Various numbers of indicator fungal species differing in abundance were identified for each plant genus and Cornus species. An overall significant correlation between endophyte community dissimilarity and phylogenetic distance of plants was detected among the disjunct genera but not among species of Cornus. However, significant correlations between beta diversities at different taxonomic scales of endophytes and phylogenetic distances of Cornus species were observed. Discussion Our results suggest important roles of host identity and environment (sampling sites), and a likely minor role of phylogenetic divergence and historical biogeographic isolation in shaping the pattern of foliar endophyte diversity and assembly in the EA-ENA disjunct genera and Cornus. The results lead to a hypothesis that the sister taxa in EA and ENA likely differ in FEF and FEB when growing in native habitats due to differences in local environments, which may potentially drive allopatric divergence of the functional features of species.
Collapse
Affiliation(s)
- Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Wei Shi
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
2
|
Meng Y, Zhang Q, Shi G, Liu Y, Du G, Feng H. Can nitrogen supersede host identity in shaping the community composition of foliar endophytic fungi in an alpine meadow ecosystem? Front Microbiol 2022; 13:895533. [PMID: 36071969 PMCID: PMC9441931 DOI: 10.3389/fmicb.2022.895533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
The availability of limiting nutrients plays a crucial role in shaping communities of endophytes. Moreover, whether fungal endophytes are host-specific remains controversial. We hypothesized that in a harsh and nitrogen (N)-deficient area, diversity and community composition of foliar endophytic fungi (FEFs) varied substantially among plots with experimentally elevated levels of macronutrients, and thus, N availability, instead of host species identity, would have a greater influence in structuring fungal communities at different scales. We also expected an important subset of taxa shared among numerous host species and N gradients to form a community-wide core microbiome. We measured the leaf functional traits and community structures of FEFs of three commonly seen species in an alpine meadow nested with a long-term N fertilization experiment. We found that host plant identity was a powerful factor driving the endophytic fungal community in leaves, even in habitats where productivity was strongly limited by nitrogen (p < 0.001). We also found that within the same host, nitrogen was an important driving force for the composition of the endophytic fungi community (p < 0.05). In addition, the leaf carbon content was the most important functional trait that limited the diversity of endophytic fungi (p < 0.001). Finally, we documented a distinct core microbiome shared among our three focal species and N gradients.
Collapse
Affiliation(s)
- Yiming Meng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qi Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Qi Zhang
| | - Guoxi Shi
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Yongjun Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Guozhen Du
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Arid and Grassland Ecology of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huyuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- Huyuan Feng
| |
Collapse
|
3
|
Matsumura E, Morinaga K, Fukuda K. Host Specificity and Seasonal Variation in the Colonization of Tubakia sensu lato Associated with Evergreen Oak Species in Eastern Japan. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02067-9. [PMID: 35857039 DOI: 10.1007/s00248-022-02067-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Foliar fungal endophytes are ubiquitous and hyperdiverse, and tend to be host-specific among dominant forest tree species. The fungal genus Tubakia sensu lato is comprised of foliar pathogens and endophytes that exhibit host preference for Quercus and other Fagaceae species. To clarify interspecific differences in ecological characteristics among Tubakia species, we examined the endophyte communities of seven evergreen Quercus spp. at three sites in eastern Japan during summer and winter. Host tree species was the most significant factor affecting endophyte community composition. Tubakia species found at the study sites were divided into five specialists and three generalists according to their relative abundance in each host species and their host ranges. Specialists were dominant on their own host in summer, and their abundance declined in winter. To test the hypothesis that generalists are more widely adapted to their environment than specialists, we compared their spore germination rates at different temperatures. Spores of generalist Tubakia species were more tolerant of colder temperatures than were spores of specialist Tubakia species, supporting our hypothesis. Seasonal and site variations among Tubakia species were also consistent with our hypothesis. Host identity and ecology were significantly associated with endophyte community structure.
Collapse
Affiliation(s)
- Emi Matsumura
- Department of Natural Environmental Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8563, Japan.
- Department of Forest Science, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Kenta Morinaga
- Department of Natural Environmental Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8563, Japan
| | - Kenji Fukuda
- Department of Natural Environmental Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba, 277-8563, Japan
- Department of Forest Science, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
4
|
Apigo A, Oono R. Plant abundance, but not plant evolutionary history, shapes patterns of host specificity in foliar fungal endophytes. Ecosphere 2022. [DOI: 10.1002/ecs2.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Austen Apigo
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| |
Collapse
|
5
|
Oita S, Ibáñez A, Lutzoni F, Miadlikowska J, Geml J, Lewis LA, Hom EFY, Carbone I, U'Ren JM, Arnold AE. Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Commun Biol 2021; 4:313. [PMID: 33750915 PMCID: PMC7943826 DOI: 10.1038/s42003-021-01826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Understanding how species-rich communities persist is a foundational question in ecology. In tropical forests, tree diversity is structured by edaphic factors, climate, and biotic interactions, with seasonality playing an essential role at landscape scales: wetter and less seasonal forests typically harbor higher tree diversity than more seasonal forests. We posited that the abiotic factors shaping tree diversity extend to hyperdiverse symbionts in leaves-fungal endophytes-that influence plant health, function, and resilience to stress. Through surveys in forests across Panama that considered climate, seasonality, and covarying biotic factors, we demonstrate that endophyte richness varies negatively with temperature seasonality. Endophyte community structure and taxonomic composition reflect both temperature seasonality and climate (mean annual temperature and precipitation). Overall our findings highlight the vital role of climate-related factors in shaping the hyperdiversity of these important and little-known symbionts of the trees that, in turn, form the foundations of tropical forest biodiversity.
Collapse
Affiliation(s)
- Shuzo Oita
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | | | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Eger, Hungary
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Erik F Y Hom
- Department of Biology, Center for Biodiversity and Conservation Research, University of Mississippi, University, MS, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Jana M U'Ren
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Yao H, Sun X, He C, Li XC, Guo LD. Host identity is more important in structuring bacterial epiphytes than endophytes in a tropical mangrove forest. FEMS Microbiol Ecol 2020; 96:5800982. [PMID: 32149339 DOI: 10.1093/femsec/fiaa038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/05/2020] [Indexed: 01/24/2023] Open
Abstract
Interactions between plants and microbes are involved in biodiversity maintenance, community stability and ecosystem functioning. However, differences in the community and network structures between phyllosphere epiphytic and endophytic bacteria have rarely been investigated. Here, we examined phyllosphere epiphytic and endophytic bacterial communities of six mangrove species using Illumina MiSeq sequencing of the 16S rRNA gene. The results revealed that the community structure of epiphytic and endophytic bacteria was different. Plant identity significantly affected the diversity and community structure of both epiphytic and endophytic bacteria, with a greater effect on the community structure of the former than the latter. Network analysis showed that both plant-epiphytic and plant-endophytic bacterial network structures were characterized by significantly highly specialized and modular but lowly connected and anti-nested properties. Furthermore, the epiphytic bacterial network was more highly specialized and modular but less connected and more strongly anti-nested than the endophytic bacterial network. This study reveals that the phyllosphere epiphytic and endophytic bacterial community structures differ and plant identity has a greater effect on the epiphytic than on the endophytic bacteria, which may provide a comprehensive insight into the role of plant identity in driving the phyllosphere epiphytic and endophytic microbial community structures in mangrove ecosystems.
Collapse
Affiliation(s)
- Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xing-Chun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Christian N, Sedio BE, Florez-Buitrago X, Ramírez-Camejo LA, Rojas EI, Mejía LC, Palmedo S, Rose A, Schroeder JW, Herre EA. Host affinity of endophytic fungi and the potential for reciprocal interactions involving host secondary chemistry. AMERICAN JOURNAL OF BOTANY 2020; 107:219-228. [PMID: 32072625 DOI: 10.1002/ajb2.1436] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Abstract
PREMISE Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host-associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi using Psychotria spp. and Theobroma cacao (cacao) as hosts. METHODS First, we surveyed endophytic communities in Psychotria species in a natural common garden using culture-based methods. Then we compared differences in endophytic community composition with differences in foliar secondary chemistry in the same host species, determined by liquid chromatography-tandem mass spectrometry. Finally, we tested how inoculation with live and heat-killed endophytes affected the cacao chemical profile. RESULTS Despite sharing a common environment and source pool for endophyte spores, different Psychotria host species harbored strikingly different endophytic communities that reflected intrinsic differences in their leaf chemical profiles. In T. cacao, inoculation with live and heat-killed endophytes produced distinct cacao chemical profiles not found in uninoculated plants or pure fungal cultures, suggesting that endophytes, like pathogens, induce changes in secondary chemical profiles of their host plant. CONCLUSIONS Collectively our results suggest at least two potential processes: (1) Plant secondary chemistry influences assembly and composition of fungal endophytic communities, and (2) host colonization by endophytes subsequently induces changes in the host chemical landscape. We propose a series of testable predictions based on the possibility that reciprocal chemical interactions are a general property of plant-endophyte interactions.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
- Department of Biology, University of Louisville, 139 Life Sciences Bldg., Louisville, KY, 40208, USA
| | - Brian E Sedio
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Apartado 0843-01103, Ciudad del Saber, Ancón, Republic of Panama
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78712, USA
| | | | - Luis A Ramírez-Camejo
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Apartado 0843-01103, Ciudad del Saber, Ancón, Republic of Panama
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
| | - Enith I Rojas
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
| | - Luis C Mejía
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Apartado 0843-01103, Ciudad del Saber, Ancón, Republic of Panama
| | - Sage Palmedo
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln., Princeton, NJ, 08544, USA
| | - Autumn Rose
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Ln., Princeton, NJ, 08544, USA
| | - John W Schroeder
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
- Ecology, Evolution, and Marine Biology, University of California Santa-Barbara, Noble Hall 2116, Santa Barbara, CA, 93106, USA
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002-9998, USA
| |
Collapse
|