1
|
Ekim R, Arikan B, Alp-Turgut FN, Koyukan B, Ozfidan-Konakci C, Yildiztugay E. Polyvinylpyrrolidone-coated copper nanoparticles dose-dependently conferred tolerance to wheat under salinity and/or drought stress by improving photochemical activity and antioxidant system. ENVIRONMENTAL RESEARCH 2024; 241:117681. [PMID: 37984786 DOI: 10.1016/j.envres.2023.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Copper (Cu) is one of the essential micronutrients for plants and has been used extensively in agricultural applications from the past to the present. However, excess copper causes toxic effects such as inhibiting photosynthesis, and disrupting biochemical processes in plants. Nanotechnology applications have offered a critical method for minimizing adverse effects and improving the effectiveness of copper nanoparticles. For this purpose, this study investigated the physiological and biochemical effects of polyvinylpyrrolidone (PVP)-coated Cu nanoparticles (PVP-Cu NP, N1, 100 mg L-1; N2, 400 mg L-1) in Triticum aestivum under alone or combined with salt (S, 150 mM NaCl) and/or drought (D, %10 PEG-6000) stress. Salinity and water deprivation caused 51% and 22% growth retardation in wheat seedlings. The combined stress condition (S + D) resulted in an approximately 3-fold reduction in the osmotic potential of the leaves. PVP-Cu NP treatments to plants under stress, especially N1 dose, were effective in restoring growth rate and regulating water relations. All stress treatments limited gas exchange in stomata and suppressed the maximal quantum yield of PSII (Fv/Fm). More than 50% improvement was observed in stomatal permeability and carbon assimilation rate under S + N1 and S + N2 applications. Examination of OJIP transient parameters revealed that N1 treatments protected photochemical reactions by reducing the dissipated energy flux (DIo/RC) in drought and S + D conditions. Exposure to S and/or D stress caused high hydrogen peroxide (H2O2) accumulation and lipid peroxidation in wheat leaves. The results indicated that S + N1 and S + N2 treatments reduced oxidative damage by stimulating the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Although similar effects were observed at D and S + D conditions with 100 mg L-1 PVP-Cu NP treatments (N1), the curative effect of the N2 dose was not observed. In D + N1 and S + D + N1 groups, AsA regeneration and GSH redox status were maintained by triggering APX, GR, and other enzyme activities belonging to the AsA-GSH cycle. In these groups, N2 treatment did not contribute to the availability of enzymatic and non-enzymatic antioxidants. As a result, this study revealed that N1 dose PVP-Cu NP application was successful in providing stress tolerance and limiting copper-induced adverse effects under all stress conditions.
Collapse
Affiliation(s)
- Rumeysa Ekim
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Buket Koyukan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| |
Collapse
|
2
|
Vurro M, Miguel-Rojas C, Pérez-de-Luque A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. PEST MANAGEMENT SCIENCE 2019; 75:2403-2412. [PMID: 30672106 DOI: 10.1002/ps.5348] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 05/05/2023]
Abstract
Natural compounds and living organisms continue to play a limited role in crop protection, and few of them have reached the market, despite their attractiveness and the efforts made in research. Very often these products have negative characteristics compared to synthetic compounds, e.g., higher costs of production, lower effectiveness, lack of persistence, and inability to reach and penetrate the target plant. Conversely, nanotechnologies are having an enormous impact on all human activities, including agriculture, even if the production of some nanomaterials is not environmentally friendly or could have adverse effects on agriculture and the environment. Thus, certain nanomaterials could facilitate the development of formulated natural pesticides, making them more effective and more environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and increase shelf-life and persistence. Such controlled-release products can improve delivery to the target pest. This review considers certain available nanomaterials and nanotechnologies for use in agriculture, discussing their properties and the feasibility of their use in sustainable crop protection, in particular, in improving the effectiveness of natural bio-based agrochemicals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council (CNR), Bari, Italy
| | - Cristina Miguel-Rojas
- Department of Science and High Technology, University of Insubria and Total Scattering Laboratory, Como, Italy
| | - Alejandro Pérez-de-Luque
- Genomic and Biotechnology, Centre Alameda del Obispo, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cordoba, Spain
| |
Collapse
|