1
|
Cottin V, Selman M, Inoue Y, Wong AW, Corte TJ, Flaherty KR, Han MK, Jacob J, Johannson KA, Kitaichi M, Lee JS, Agusti A, Antoniou KM, Bianchi P, Caro F, Florenzano M, Galvin L, Iwasawa T, Martinez FJ, Morgan RL, Myers JL, Nicholson AG, Occhipinti M, Poletti V, Salisbury ML, Sin DD, Sverzellati N, Tonia T, Valenzuela C, Ryerson CJ, Wells AU. Syndrome of Combined Pulmonary Fibrosis and Emphysema: An Official ATS/ERS/JRS/ALAT Research Statement. Am J Respir Crit Care Med 2022; 206:e7-e41. [PMID: 35969190 PMCID: PMC7615200 DOI: 10.1164/rccm.202206-1041st] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of emphysema is relatively common in patients with fibrotic interstitial lung disease. This has been designated combined pulmonary fibrosis and emphysema (CPFE). The lack of consensus over definitions and diagnostic criteria has limited CPFE research. Goals: The objectives of this task force were to review the terminology, definition, characteristics, pathophysiology, and research priorities of CPFE and to explore whether CPFE is a syndrome. Methods: This research statement was developed by a committee including 19 pulmonologists, 5 radiologists, 3 pathologists, 2 methodologists, and 2 patient representatives. The final document was supported by a focused systematic review that identified and summarized all recent publications related to CPFE. Results: This task force identified that patients with CPFE are predominantly male, with a history of smoking, severe dyspnea, relatively preserved airflow rates and lung volumes on spirometry, severely impaired DlCO, exertional hypoxemia, frequent pulmonary hypertension, and a dismal prognosis. The committee proposes to identify CPFE as a syndrome, given the clustering of pulmonary fibrosis and emphysema, shared pathogenetic pathways, unique considerations related to disease progression, increased risk of complications (pulmonary hypertension, lung cancer, and/or mortality), and implications for clinical trial design. There are varying features of interstitial lung disease and emphysema in CPFE. The committee offers a research definition and classification criteria and proposes that studies on CPFE include a comprehensive description of radiologic and, when available, pathological patterns, including some recently described patterns such as smoking-related interstitial fibrosis. Conclusions: This statement delineates the syndrome of CPFE and highlights research priorities.
Collapse
Affiliation(s)
- Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University of Lyon, INRAE, Lyon, France
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | | | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | | - Joseph Jacob
- University College London, London, United Kingdom
| | - Kerri A. Johannson
- Department of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Joyce S. Lee
- University of Colorado Denver Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Katerina M. Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, University of Crete, Heraklion, Greece
| | | | - Fabian Caro
- Hospital de Rehabilitación Respiratoria "María Ferrer", Buenos Aires, Argentina
| | | | - Liam Galvin
- European idiopathic pulmonary fibrosis and related disorders federation
| | - Tae Iwasawa
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | | | | | - Andrew G. Nicholson
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | - Don D. Sin
- University of British Columbia, Vancouver, Canada
| | - Nicola Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Claudia Valenzuela
- Pulmonology Department, Hospital Universitario de la Princesa, Departamento Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
2
|
Torrisi SE, Kahn N, Wälscher J, Polke M, Lee JS, Molyneaux PL, Sambataro FM, Heussel CP, Vancheri C, Kreuter M. Outcomes and Incidence of PF-ILD According to Different Definitions in a Real-World Setting. Front Pharmacol 2021; 12:790204. [PMID: 34975486 PMCID: PMC8718675 DOI: 10.3389/fphar.2021.790204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Almost one-third of fibrosing ILD (fILDs) have a clinical disease behavior similar to IPF, demonstrating a progressive phenotype (PF-ILD). However, there are no globally accepted criteria on the definition of a progressive phenotype in non-IPF fILD yet. Four different definitions have been used; however, no internationally accepted definition currently exists. Research Question: To compare the clinical and functional characteristics of progressive fILD according to the currently available definitions. Study design and methods: Cases of fILD were identified retrospectively from the database of the tertiary referral center for ILD in Heidelberg. Lung function, clinical signs of progression, and radiological changes were evaluated. Patients with fILD were considered to have progression according to each of the four available definitions: Cottin (CO), RELIEF (RE), INBUILD (IN), and UILD study. Lung function changes, expressed as mean absolute decline of FVC%, were reported every 3 months following diagnosis and analyzed in the context of each definition. Survival was also analyzed. Results: A total of 566 patients with non-IPF fILD were included in the analysis. Applying CO-, RE-, IN-, and UILD-definitions, 232 (41%), 183 (32%), 274 (48%), and 174 (31%) patients were defined as PF-ILD, respectively. RE- and UILD-criteria were the most stringent, with only 32 and 31% patients defined as progressive, while IN- was the most broad, with almost 50% of patients defined as progressive. CO- definition was in-between, classifying 41% as progressive. PF ILD patients with a UILD definition had worse prognosis. Interpretation: Depending on the definition used, the existing criteria identify different groups of patients with progressive fILD, and this may have important prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Sebastiano Emanuele Torrisi
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-San Marco, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Julia Wälscher
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Markus Polke
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Joyce S. Lee
- Anschutz Medical Campus, Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | - Francesca Maria Sambataro
- Radiology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Claus Peter Heussel
- Radiology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-San Marco, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg and German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
3
|
Cazzola M. Moving to a Personalized Approach in Respiratory Medicine. From Academic Research to Regulatory Intervention. FRONTIERS IN DRUG SAFETY AND REGULATION 2021; 1. [DOI: 10.3389/fdsfr.2021.752581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Megia-Fernandez A, Marshall A, Akram AR, Mills B, Chankeshwara SV, Scholefield E, Miele A, McGorum BC, Michaels C, Knighton N, Vercauteren T, Lacombe F, Dentan V, Bruce AM, Mair J, Hitchcock R, Hirani N, Haslett C, Bradley M, Dhaliwal K. Optical Detection of Distal Lung Enzyme Activity in Human Inflammatory Lung Disease. BME FRONTIERS 2021; 2021:9834163. [PMID: 37851586 PMCID: PMC10530652 DOI: 10.34133/2021/9834163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/10/2021] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. There is a need to develop platforms delineating inflammatory biology of the distal human lung. We describe a platform technology approach to detect in situ enzyme activity and observe drug inhibition in the distal human lung using a combination of matrix metalloproteinase (MMP) optical reporters, fibered confocal fluorescence microscopy (FCFM), and a bespoke delivery device. Introduction. The development of new therapeutic agents is hindered by the lack of in vivo in situ experimental methodologies that can rapidly evaluate the biological activity or drug-target engagement in patients. Methods. We optimised a novel highly quenched optical molecular reporter of enzyme activity (FIB One) and developed a translational pathway for in-human assessment. Results. We demonstrate the specificity for matrix metalloproteases (MMPs) 2, 9, and 13 and probe dequenching within physiological levels of MMPs and feasibility of imaging within whole lung models in preclinical settings. Subsequently, in a first-in-human exploratory experimental medicine study of patients with fibroproliferative lung disease, we demonstrate, through FCFM, the MMP activity in the alveolar space measured through FIB One fluorescence increase (with pharmacological inhibition). Conclusion. This translational in situ approach enables a new methodology to demonstrate active drug target effects of the distal lung and consequently may inform therapeutic drug development pathways.
Collapse
Affiliation(s)
- Alicia Megia-Fernandez
- EaStCHEM, The University of Edinburgh School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh, UK, EH9 3FJ
| | - Adam Marshall
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Ahsan R. Akram
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Bethany Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Sunay V. Chankeshwara
- EaStCHEM, The University of Edinburgh School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh, UK, EH9 3FJ
| | - Emma Scholefield
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Amy Miele
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Bruce C. McGorum
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK, EH25 9RG
| | - Chesney Michaels
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Nathan Knighton
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK, SE1 7EH
| | | | | | - Annya M. Bruce
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Joanne Mair
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Robert Hitchcock
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112, USA
| | - Nik Hirani
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Chris Haslett
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| | - Mark Bradley
- EaStCHEM, The University of Edinburgh School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh, UK, EH9 3FJ
| | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK, EH16 4TJ
| |
Collapse
|
5
|
Cottin V. Treatment of progressive fibrosing interstitial lung diseases: a milestone in the management of interstitial lung diseases. Eur Respir Rev 2019; 28:28/153/190109. [PMID: 31578213 DOI: 10.1183/16000617.0109-2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, UMR754, Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|