1
|
Sahu JK, Thakur S, Subhadarsini I, Acharya N. p12 isoform-2 is a regulatory subunit of human DNA polymerase delta and is dysregulated in various cancers. FEBS Lett 2024; 598:3087-3104. [PMID: 39626050 DOI: 10.1002/1873-3468.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/24/2024]
Abstract
Dysregulation of human DNA polymerase delta (Polδ) subunits is associated with genome instability and pathological disorders. Genome databases suggest the expression of several spliced variants of subunits which may alter Polδ function. Here, we analyzed the protein-encoding variants of the Polδ subunit p12 and their association with cancer. p12 isoform-2 (p12*) encodes a 79 aa protein with a C-terminal tail distinct from the previously characterized p12. Like p12, p12* dimerizes and interacts with p125 and p50 subunits and is thus an integral component of Polδ. Further, we observed dysregulated p12* expression in low-grade glioma, renal, thyroid, and pancreatic carcinomas. This study identifies a previously unrecognized Polδ complex and highlights a possible regulatory role of p12 variants in cellular phenotypes.
Collapse
Affiliation(s)
- Jugal Kishor Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Shweta Thakur
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Ipsita Subhadarsini
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
2
|
Montazersaheb S, Kazemi M, Nabat E, Nielsen PE, Hejazi MS. Downregulation of TdT Expression through Splicing Modulation by Antisense Peptide Nucleic Acid (PNA). Curr Pharm Biotechnol 2019; 20:168-178. [PMID: 30727883 DOI: 10.2174/1389201020666190206202650] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/29/2018] [Accepted: 01/30/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Antisense oligonucleotides are able to modulate splicing patterns and offer therapeutic intervention for cancer and other diseases. Considering TdT potential as a target in cancer therapy, the present study aimed to investigate splicing alteration of TdT pre-mRNA in Molt-4 cells using peptide nucleic acid (PNA) octaarginine and cholic acid conjugates. METHOD We examined 16 mer PNAs targeting 5' and 3' junctions of intron 7 and addressed their mRNA splicing modulation effects using RT-PCR analysis. We also tested corresponding 2-base mismatch PNAs to confirm the sequence specificity. In addition, protien level of TdT, apoptosis induction and cell viability rate were analysed. RESULTS PCR analysis showed that full match PNAs could modulate the splicing process, thereby producing a longer mRNA still including intron 7. PCR results also implied exon 7 skipping. In addition, reduced level of TdT protein in Molt-4 cells was observed. Downregulation of TdT level in PNA treated cells was accompanied by an increased rate of apoptosis and decreased the level of cell survival. CONCLUSION PNA-mediated splicing modulation can specifically downregulate TdT expression. TdT dowregulation results in apoptosis induction and reduced cell survival in Molt-4 cells. These observations could draw more attentions to develop PNA based strategies for TdT suppression and consequent apoptosis induction in acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kazemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Nabat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Faculty of Health and Medical Science, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mohammad S Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Montazersaheb S, Hejazi MS, Nozad Charoudeh H. Potential of Peptide Nucleic Acids in Future Therapeutic Applications. Adv Pharm Bull 2018; 8:551-563. [PMID: 30607328 PMCID: PMC6311635 DOI: 10.15171/apb.2018.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Peptide nucleic acids (PNA) are synthetic analog of DNA with a repeating N-(2-aminoethyl)-glycine peptide backbone connected to purine and pyrimidine nucleobases via a linker. Considering the unique properties of PNA, including resistance to enzymatic digestion, higher biostability combined with great hybridization affinity toward DNA and RNA, it has attracted great attention toward PNA- based technology as a promising approach for gene alteration. However, an important challenge in utilizing PNA is poor intracellular uptake. Therefore, some strategies have been developed to enhance the delivery of PNA in order to reach cognate site. Although PNAs primarily demonstrated to act as an antisense and antigene agents for inhibition of transcription and translation of target genes, more therapeutic applications such as splicing modulation and gene editing are also used to produce specific genome modifications. Hence, several approaches based on PNAs technology have been designed for these purposes. This review briefly presents the properties and characteristics of PNA as well as different gene modulation mechanisms. Thereafter, current status of successful therapeutic applications of PNA as gene therapeutic intervention in different research areas with special interest in medical application in particular, anti-cancer therapy are discussed. Then it focuses on possible use of PNA as anti-mir agent and PNA-based strategies against clinically important bacteria.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
4
|
Baharlou Houreh M, Ghorbani Kalkhajeh P, Niazi A, Ebrahimi F, Ebrahimie E. SpliceDetector: a software for detection of alternative splicing events in human and model organisms directly from transcript IDs. Sci Rep 2018; 8:5063. [PMID: 29567976 PMCID: PMC5864913 DOI: 10.1038/s41598-018-23245-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
In eukaryotes, different combinations of exons lead to multiple transcripts with various functions in protein level, in a process called alternative splicing (AS). Unfolding the complexity of functional genomics through genome-wide profiling of AS and determining the altered ultimate products provide new insights for better understanding of many biological processes, disease progress as well as drug development programs to target harmful splicing variants. The current available tools of alternative splicing work with raw data and include heavy computation. In particular, there is a shortcoming in tools to discover AS events directly from transcripts. Here, we developed a Windows-based user-friendly tool for identifying AS events from transcripts without the need to any advanced computer skill or database download. Meanwhile, due to online working mode, our application employs the updated SpliceGraphs without the need to any resource updating. First, SpliceGraph forms based on the frequency of active splice sites in pre-mRNA. Then, the presented approach compares query transcript exons to SpliceGraph exons. The tool provides the possibility of statistical analysis of AS events as well as AS visualization compared to SpliceGraph. The developed application works for transcript sets in human and model organisms.
Collapse
Affiliation(s)
| | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran. .,Adelaide Medical School, The University of Adelaide, Adelaide, Australia. .,School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, The University of South Australia, Adelaide, SA, Australia. .,School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Wang X, Cui X, Zhang Y, Hao H, Ju Z, Liu D, Jiang Q, Yang C, Sun Y, Wang C, Huang J, Zhu H. Splicing-related single nucleotide polymorphism of RAB, member of RAS oncogene family like 2B (RABL2B) jeopardises semen quality in Chinese Holstein bulls. Reprod Fertil Dev 2017; 29:2411-2418. [DOI: 10.1071/rd17111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
RAB, member of RAS oncogene family like 2B (RABL2B) is a member of a poorly characterised clade of the RAS GTPase superfamily, which plays an essential role in male fertility, sperm intraflagellar transport and tail assembly. In the present study, we identified a novel RABL2B splice variant in bovine testis and spermatozoa. This splice variant, designated RABL2B-TV, is characterised by exon 2 skipping. Moreover, a single nucleotide polymorphism (SNP), namely c.125G>A, was found within the exonic splicing enhancer (ESE) motif, indicating that the SNP caused the production of the RABL2B-TV aberrant splice variant. This was demonstrated by constructing a pSPL3 exon capturing vector with different genotypes and transfecting these vectors into murine Leydig tumour cell line (MLTC-1) cells. Expression of the RABL2B-TV transcript was lower in semen from high- versus low-performance bulls. Association analysis showed that sperm deformity rate was significantly lower in Chinese Holstein bulls with the GG or GA genotype than in bulls with the AA genotype (P < 0.05). In addition, initial sperm motility was significantly higher in individuals with the GG or GA genotype than in individuals with the AA genotype (P < 0.05). The findings of the present study suggest that the difference in semen quality in bulls with different RABL2B genotypes is generated via an alternative splicing mechanism caused by a functional SNP within the ESE motif.
Collapse
|
6
|
Chabot B. My road to alternative splicing control: from simple paths to loops and interconnections. Biochem Cell Biol 2015; 93:171-9. [PMID: 25759250 DOI: 10.1139/bcb-2014-0161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With the functional importance of alternative splicing being validated in nearly every mammalian biological system and implicated in many human diseases, it is now crucial to identify the molecular programs that control the production of splice variants. In this article, I will survey how our knowledge of the basic principles of alternative splicing control evolved over the last 25 years. I will also describe how investigation of the splicing control of an apoptotic regulator led us to identify novel effectors and revealed the existence of converging pathways linking splicing decisions to DNA damage. Finally, I will review how our efforts at developing tools designed to monitor and redirect splicing helped assess the impact of misregulated splicing in cancer.
Collapse
Affiliation(s)
- Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
7
|
Genomics of alternative splicing: evolution, development and pathophysiology. Hum Genet 2014; 133:679-87. [PMID: 24378600 DOI: 10.1007/s00439-013-1411-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/15/2013] [Indexed: 12/11/2022]
Abstract
Alternative splicing is a major cellular mechanism in metazoans for generating proteomic diversity. A large proportion of protein-coding genes in multicellular organisms undergo alternative splicing, and in humans, it has been estimated that nearly 90 % of protein-coding genes-much larger than expected-are subject to alternative splicing. Genomic analyses of alternative splicing have illuminated its universal role in shaping the evolution of genomes, in the control of developmental processes, and in the dynamic regulation of the transcriptome to influence phenotype. Disruption of the splicing machinery has been found to drive pathophysiology, and indeed reprogramming of aberrant splicing can provide novel approaches to the development of molecular therapy. This review focuses on the recent progress in our understanding of alternative splicing brought about by the unprecedented explosive growth of genomic data and highlights the relevance of human splicing variation on disease and therapy.
Collapse
|
8
|
TIPMaP: a web server to establish transcript isoform profiles from reliable microarray probes. BMC Genomics 2013; 14:922. [PMID: 24373374 PMCID: PMC3884118 DOI: 10.1186/1471-2164-14-922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Background Standard 3′ Affymetrix gene expression arrays have contributed a significantly higher volume of existing gene expression data than other microarray platforms. These arrays were designed to identify differentially expressed genes, but not their alternatively spliced transcript forms. No resource can currently identify expression pattern of specific mRNA forms using these microarray data, even though it is possible to do this. Results We report a web server for expression profiling of alternatively spliced transcripts using microarray data sets from 31 standard 3′ Affymetrix arrays for human, mouse and rat species. The tool has been experimentally validated for mRNAs transcribed or not-detected in a human disease condition (non-obstructive azoospermia, a male infertility condition). About 4000 gene expression datasets were downloaded from a public repository. ‘Good probes’ with complete coverage and identity to latest reference transcript sequences were first identified. Using them, ‘Transcript specific probe-clusters’ were derived for each platform and used to identify expression status of possible transcripts. The web server can lead the user to datasets corresponding to specific tissues, conditions via identifiers of the microarray studies or hybridizations, keywords, official gene symbols or reference transcript identifiers. It can identify, in the tissues and conditions of interest, about 40% of known transcripts as ‘transcribed’, ‘not-detected’ or ‘differentially regulated’. Corresponding additional information for probes, genes, transcripts and proteins can be viewed too. We identified the expression of transcripts in a specific clinical condition and validated a few of these transcripts by experiments (using reverse transcription followed by polymerase chain reaction). The experimental observations indicated higher agreements with the web server results, than contradictions. The tool is accessible at http://resource.ibab.ac.in/TIPMaP. Conclusion The newly developed online tool forms a reliable means for identification of alternatively spliced transcript-isoforms that may be differentially expressed in various tissues, cell types or physiological conditions. Thus, by making better use of existing data, TIPMaP avoids the dependence on precious tissue-samples, in experiments with a goal to establish expression profiles of alternative splice forms – at least in some cases.
Collapse
|
9
|
Brosseau JP, Lucier JF, Lamarche AA, Shkreta L, Gendron D, Lapointe E, Thibault P, Paquet E, Perreault JP, Abou Elela S, Chabot B. Redirecting splicing with bifunctional oligonucleotides. Nucleic Acids Res 2013; 42:e40. [PMID: 24375754 PMCID: PMC3973305 DOI: 10.1093/nar/gkt1287] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ectopic modulators of alternative splicing are important tools to study the function of splice variants and for correcting mis-splicing events that cause human diseases. Such modulators can be bifunctional oligonucleotides made of an antisense portion that determines target specificity, and a non-hybridizing tail that recruits proteins or RNA/protein complexes that affect splice site selection (TOSS and TOES, respectively, for targeted oligonucleotide silencer of splicing and targeted oligonucleotide enhancer of splicing). The use of TOSS and TOES has been restricted to a handful of targets. To generalize the applicability and demonstrate the robustness of TOSS, we have tested this approach on more than 50 alternative splicing events. Moreover, we have developed an algorithm that can design active TOSS with a success rate of 80%. To produce bifunctional oligonucleotides capable of stimulating splicing, we built on the observation that binding sites for TDP-43 can stimulate splicing and improve U1 snRNP binding when inserted downstream from 5′ splice sites. A TOES designed to recruit TDP-43 improved exon 7 inclusion in SMN2. Overall, our study shows that bifunctional oligonucleotides can redirect splicing on a variety of genes, justifying their inclusion in the molecular arsenal that aims to alter the production of splice variants.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Laboratory of Functional Genomics and Research Centre on RNA Biology of the Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada and Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alternative splicing of mutually exclusive exons—A review. Biosystems 2013; 114:31-8. [DOI: 10.1016/j.biosystems.2013.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
|
11
|
Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance. Int J Cell Biol 2013; 2013:973584. [PMID: 23935627 PMCID: PMC3713377 DOI: 10.1155/2013/973584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 01/07/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor (HER-2) occurs in 20-30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant Δ16HER-2 (results from exon 16 skipping) increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention) and p100 (results from intron 15 retention) inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. "Individualised" strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.
Collapse
|
12
|
Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 2012; 18:472-82. [PMID: 22819011 DOI: 10.1016/j.molmed.2012.06.006] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 01/18/2023]
Abstract
In metazoans, alternative splicing of genes is essential for regulating gene expression and contributing to functional complexity. Computational predictions, comparative genomics, and transcriptome profiling of normal and diseased tissues indicate that an unexpectedly high fraction of diseases are caused by mutations that alter splicing. Mutations in cis elements cause missplicing of genes that alter gene function and contribute to disease pathology. Mutations of core spliceosomal factors are associated with hematolymphoid neoplasias, retinitis pigmentosa, and microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Mutations in the trans regulatory factors that control alternative splicing are associated with autism spectrum disorder, amyotrophic lateral sclerosis (ALS), and various cancers. In addition to discussing the disorders caused by these mutations, this review summarizes therapeutic approaches that have emerged to correct splicing of individual genes or target the splicing machinery.
Collapse
|
13
|
Biomolecular Triconjugates Formed between Gold, Protamine, and Nucleic Acid: Comparative Characterization on the Nanoscale. JOURNAL OF NANOTECHNOLOGY 2012. [DOI: 10.1155/2012/954601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA and RNA micro- and nanoparticles are increasingly being used for gene and siRNA drug delivery and a variety of other applications in bionanotechnology. On the nanoscale, these entities represent unique challenges from a physicochemical characterization perspective. Here, nucleic acid conjugates with protamine and gold nanoparticles (GNP) were characterized comparatively in the nanorange of concentration by UV/Vis NanoDrop spectroscopy, fluorimetry, and gel electrophoresis. Given the intense interest in splice-site switching oligomers (SSOs), we utilized a human tumor cell culture system (HeLa pLuc-705), in which SSO-directed splicing repair upregulates luciferase expression, in order to investigate bioactivity of the bionanoconjugates. Process parameters important for bioactivity were investigated, and the bimolecular nanoconjugates were confirmed by shifts in the dynamic laser light scatter (DLLS), UV/Vis spectrum, gel electrophoresis, or sedimentation pattern. The data presented herein may be useful in the future development of pharmaceutical and biotechnology formulations, processes, and analyses concerning protein, DNA, or RNA bionanoconjugates.
Collapse
|
14
|
Dery KJ, Gaur S, Gencheva M, Yen Y, Shively JE, Gaur RK. Mechanistic control of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1, and hnRNP M. J Biol Chem 2011; 286:16039-51. [PMID: 21398516 PMCID: PMC3091213 DOI: 10.1074/jbc.m110.204057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/14/2011] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is expressed in a variety of cell types and is implicated in carcinogenesis. Alternative splicing of CEACAM1 pre-mRNA generates two cytoplasmic domain splice variants characterized by the inclusion (L-isoform) or exclusion (S-isoform) of exon 7. Here we show that the alternative splicing of CEACAM1 pre-mRNA is regulated by novel cis elements residing in exon 7. We report the presence of three exon regulatory elements that lead to the inclusion or exclusion of exon 7 CEACAM1 mRNA in ZR75 breast cancer cells. Heterologous splicing reporter assays demonstrated that the maintenance of authentic alternative splicing mechanisms were independent of the CEACAM1 intron sequence context. We show that forced expression of these exon regulatory elements could alter CEACAM1 splicing in HEK-293 cells. Using RNA affinity chromatography, three members of the heterogeneous nuclear ribonucleoprotein family (hnRNP L, hnRNP A1, and hnRNP M) were identified. RNA immunoprecipitation of hnRNP L and hnRNP A1 revealed a binding motif located central and 3' to exon 7, respectively. Depletion of hnRNP A1 or L by RNAi in HEK-293 cells promoted exon 7 inclusion, whereas overexpression led to exclusion of the variable exon. By contrast, overexpression of hnRNP M showed exon 7 inclusion and production of CEACAM1-L mRNA. Finally, stress-induced cytoplasmic accumulation of hnRNP A1 in MDA-MB-468 cells dynamically alters the CEACAM1-S:CEACAM1:L ratio in favor of the l-isoform. Thus, we have elucidated the molecular factors that control the mechanism of splice-site recognition in the alternative splicing regulation of CEACAM1.
Collapse
Affiliation(s)
| | - Shikha Gaur
- Clinical and Molecular Pharmacology Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - Yun Yen
- Clinical and Molecular Pharmacology Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | |
Collapse
|
15
|
Singh NN, Hollinger K, Bhattacharya D, Singh RN. An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2010; 16:1167-1181. [PMID: 20413618 PMCID: PMC2874169 DOI: 10.1261/rna.2154310] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
Here we report a novel finding of an antisense oligonucleotide (ASO) microwalk in which we examined the position-specific role of intronic residues downstream from the 5' splice site (5' ss) of SMN2 exon 7, skipping of which is associated with spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Our results revealed the inhibitory role of a cytosine residue at the 10th intronic position ((10)C), which is neither conserved nor associated with any known splicing motif. Significance of (10)C emerged from the splicing pattern of SMN2 exon 7 in presence of a 14-mer ASO (L14) that sequestered two adjacent hnRNP A1 motifs downstream from (10)C and yet promoted SMN2 exon 7 skipping. Another 14-mer ASO (F14) that sequestered both, (10)C and adjacent hnRNP A1 motifs, led to a strong stimulation of SMN2 exon 7 inclusion. The inhibitory role of (10)C was found to be tightly linked to its unpaired status and specific positioning immediately upstream of a RNA:RNA helix formed between the targeting ASO and its intronic target. Employing a heterologous context as well as changed contexts of SMN2 intron 7, we show that the inhibitory effect of unpaired (10)C is dependent upon a long-distance interaction involving downstream intronic sequences. Our report furnishes one of the rare examples in which an ASO-based approach could be applied to unravel the critical role of an intronic position that may not belong to a linear motif and yet play significant role through long-distance interactions.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
16
|
Dong L, Jensen RV, De Rienzo A, Gordon GJ, Xu Y, Sugarbaker DJ, Bueno R. Differentially expressed alternatively spliced genes in malignant pleural mesothelioma identified using massively parallel transcriptome sequencing. BMC MEDICAL GENETICS 2009; 10:149. [PMID: 20043850 PMCID: PMC2808307 DOI: 10.1186/1471-2350-10-149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 12/31/2009] [Indexed: 12/22/2022]
Abstract
Background Analyses of Expressed Sequence Tags (ESTs) databases suggest that most human genes have multiple alternative splice variants. The alternative splicing of pre-mRNA is tightly regulated during development and in different tissue types. Changes in splicing patterns have been described in disease states. Recently, we used whole-transcriptome shotgun pryrosequencing to characterize 4 malignant pleural mesothelioma (MPM) tumors, 1 lung adenocarcinoma and 1 normal lung. We hypothesized that alternative splicing profiles might be detected in the sequencing data for the expressed genes in these samples. Methods We developed a software pipeline to map the transcriptome read sequences of the 4 MPM samples and 1 normal lung sample onto known exon junction sequences in the comprehensive AceView database of expressed sequences and to count how many reads map to each junction. 13,274,187 transcriptome reads generated by the Roche/454 sequencing platform for 5 samples were compared with 151,486 exon junctions from the AceView database. The exon junction expression index (EJEI) was calculated for each exon junction in each sample to measure the differential expression of alternative splicing events. Top ten exon junctions with the largest EJEI difference between the 4 mesothelioma and the normal lung sample were then examined for differential expression using Quantitative Real Time PCR (qRT-PCR) in the 5 sequenced samples. Two of the differentially expressed exon junctions (ACTG2.aAug05 and CDK4.aAug05) were further examined with qRT-PCR in additional 18 MPM and 18 normal lung specimens. Results We found 70,953 exon junctions covered by at least one sequence read in at least one of the 5 samples. All 10 identified most differentially expressed exon junctions were validated as present by RT-PCR, and 8 were differentially expressed exactly as predicted by the sequence analysis. The differential expression of the AceView exon junctions for the ACTG2 and CDK4 genes were also observed to be statistically significant in an additional 18 MPM and 18 normal lung samples examined using qRT-PCR. The differential expression of these two junctions was shown to successfully classify these mesothelioma and normal lung specimens with high sensitivity (89% and 78%, respectively). Conclusion Whole-transcriptome shotgun sequencing, combined with a downstream bioinformatics pipeline, provides powerful tools for the identification of differentially expressed exon junctions resulting from alternative splice variants. The alternatively spliced genes discovered in the study could serve as useful diagnostic markers as well as potential therapeutic targets for MPM.
Collapse
Affiliation(s)
- Lingsheng Dong
- The Thoracic Surgery Oncology Laboratory and Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Dery KJ, Gusti V, Gaur S, Shively JE, Yen Y, Gaur RK. Alternative splicing as a therapeutic target for human diseases. Methods Mol Biol 2009; 555:127-44. [PMID: 19495693 DOI: 10.1007/978-1-60327-295-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The majority of eukaryotic genes undergo alternative splicing, an evolutionarily conserved phenomenon, to generate functionally diverse protein isoforms from a single transcript. The fact that defective pre-mRNA splicing can generate non-functional and often toxic proteins with catastrophic effects, accurate removal of introns and joining of exons is vital for cell homeostasis. Thus, molecular tools that could either silence a disease-causing gene or regulate its expression in trans will find many therapeutic applications. Here we present two RNA-based approaches, namely RNAi and theophylline-responsive riboswitch that can regulate gene expression by loss-of-function and modulation of splicing, respectively. These strategies are likely to continue to play an integral role in studying gene function and drug discovery.
Collapse
Affiliation(s)
- Kenneth J Dery
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Singh NN, Shishimorova M, Cao LC, Gangwani L, Singh RN. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol 2009; 6:341-50. [PMID: 19430205 DOI: 10.4161/rna.6.3.8723] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. Most SMA cases are associated with the low levels of SMN owing to deletion of Survival Motor Neuron 1 (SMN1). SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to predominant skipping of exon 7. Hence, correction of aberrant splicing of SMN2 exon 7 holds the potential for cure of SMA. Here we report an 8-mer antisense oligonucleotide (ASO) to have a profound stimulatory response on correction of aberrant splicing of SMN2 exon 7 by binding to a unique GC-rich sequence located within intron 7 of SMN2. We confirm that the splicing-switching ability of this short ASO comes with a high degree of specificity and reduced off-target effect compared to larger ASOs targeting the same sequence. We further demonstrate that a single low nanomolar dose of this 8-mer ASO substantially increases the levels of SMN and a host of factors including Gemin 2, Gemin 8, ZPR1, hnRNP Q and Tra2-beta1 known to be down-regulated in SMA. Our findings underscore the advantages and unmatched potential of very short ASOs in splicing modulation in vivo.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 01605, USA
| | | | | | | | | |
Collapse
|
19
|
Tanner G, Glaus E, Barthelmes D, Ader M, Fleischhauer J, Pagani F, Berger W, Neidhardt J. Therapeutic strategy to rescue mutation-induced exon skipping in rhodopsin by adaptation of U1 snRNA. Hum Mutat 2009; 30:255-63. [DOI: 10.1002/humu.20861] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Sumariwalla PF, Jin P, Zhang J, Ni I, Crawford D, Shepard HM, Paleolog EM, Feldmann M. Antagonism of the human epidermal growth factor receptor family controls disease severity in murine collagen-induced arthritis. ACTA ACUST UNITED AC 2008; 58:3071-80. [PMID: 18821697 DOI: 10.1002/art.23885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the therapeutic potential of the human epidermal growth factor receptor (HER) family inhibitor, herstatin, in an animal model of arthritis. METHODS Constructs of herstatin and modified tissue plasminogen activator (tPA)-herstatin were expressed in HEK 293T cells, and secreted protein was analyzed by Western blotting. Tissue PA-herstatin adenovirus (Ad-tPA-Her) was prepared, and titers established. Gene expression of Ad-tPA-Her was determined by polymerase chain reaction using HeLa cells. Pharmacokinetics of gene and protein expression in vivo in liver tissue and serum samples were confirmed via intravenous administration of Ad-tPA-Her. Clinical signs of disease were monitored in arthritic DBA/1 mice after therapeutic administration of Ad-tPA-Her, and histologic analysis of hind foot specimens was performed. RESULTS Native herstatin was not secreted in supernatants, while modified tPA-herstatin was detected in abundance. HeLa cells stably expressed the tPA-herstatin gene when infected with virus. Additionally, tPA-herstatin gene and protein expression was observed over time in mice treated with virus. Importantly, Ad-tPA-Her, when administered therapeutically to arthritic mice, controlled clinical and histologic signs of disease and reduced the number of joints with severe damage. CONCLUSION Our results support the notion that the human epidermal growth factor receptor family has a role in the progression of collagen-induced arthritis. The novel tPA-herstatin fusion protein could be used as an effective therapeutic tool for control of inflammatory disorders involving an angiogenic component.
Collapse
Affiliation(s)
- Percy F Sumariwalla
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Savvateeva-Popova E, Medvedeva A, Popov A, Evgen'ev M. Role of non-coding RNAs in neurodegeneration and stress response in Drosophila. Biotechnol J 2008; 3:1010-21. [PMID: 18702036 DOI: 10.1002/biot.200800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inherent limitations of genetic analysis in humans and other mammals as well as striking conservation of most genes controlling nervous system functioning in flies and mammals made Drosophila an attractive model to investigate various aspects of brain diseases. Since RNA research has made great progress in recent years here we present an overview of studies demonstrating the role of various non-coding RNAs in neurodegeneration and stress response in Drosophila as a model organism. We put special emphasis on the role of non-coding micro RNAs, hsr-omega transcripts, and artificial small highly structured RNAs as triggers of neuropathology including aggregates formation, cognitive abnormalities and other symptoms. Cellular stress is a conspicuous feature of many neurodegenerative diseases and the production of specialized proteins protects the nerve cells against aggregates formation. Therefore, herein we describe some data implicating various classes of non-coding RNAs in stress response in Drosophila. All these findings highlight Drosophila as an important model system to investigate various brain diseases potentially mediated by some non-coding RNAs including polyglutamine diseases, Alzheimer's disease, Huntigton's disease, and many others.
Collapse
|
22
|
Kim DS, Gusti V, Dery KJ, Gaur RK. Ligand-induced sequestering of branchpoint sequence allows conditional control of splicing. BMC Mol Biol 2008; 9:23. [PMID: 18267036 PMCID: PMC2275289 DOI: 10.1186/1471-2199-9-23] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 02/12/2008] [Indexed: 12/24/2022] Open
Abstract
Background Despite tremendous progress in understanding the mechanisms of constitutive and alternative splicing, an important and widespread step along the gene expression pathway, our ability to deliberately regulate gene expression at this step remains rudimentary. The present study was performed to investigate whether a theophylline-dependent "splice switch" that sequesters the branchpoint sequence (BPS) within RNA-theophylline complex can regulate alternative splicing. Results We constructed a series of pre-mRNAs in which the BPS was inserted within theophylline aptamer. We show that theophylline-induced sequestering of BPS inhibits pre-mRNA splicing both in vitro and in vivo in a dose-dependent manner. Several lines of evidence suggest that theophylline-dependent inhibition of splicing is highly specific, and thermodynamic stability of RNA-theophylline complex as well as the location of BPS within this complex affects the efficiency of splicing inhibition. Finally, we have constructed an alternative splicing model pre-mRNA substrate in which theophylline caused exon skipping both in vitro and in vivo, suggesting that a small molecule-RNA interaction can modulate alternative splicing. Conclusion These findings provide the ability to control splicing pattern at will and should have important implications for basic, biotechnological, and biomedical research.
Collapse
Affiliation(s)
- Dong-Suk Kim
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
24
|
Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 2007; 8:749-61. [PMID: 17726481 DOI: 10.1038/nrg2164] [Citation(s) in RCA: 752] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human genes contain a dense array of diverse cis-acting elements that make up a code required for the expression of correctly spliced mRNAs. Alternative splicing generates a highly dynamic human proteome through networks of coordinated splicing events. Cis- and trans-acting mutations that disrupt the splicing code or the machinery required for splicing and its regulation have roles in various diseases, and recent studies have provided new insights into the mechanisms by which these effects occur. An unexpectedly large fraction of exonic mutations exhibit a primary pathogenic effect on splicing. Furthermore, normal genetic variation significantly contributes to disease severity and susceptibility by affecting splicing efficiency.
Collapse
Affiliation(s)
- Guey-Shin Wang
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Kühn-Hölsken E, Dybkov O, Sander B, Lührmann R, Urlaub H. Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res 2007; 35:e95. [PMID: 17652325 PMCID: PMC1976460 DOI: 10.1093/nar/gkm540] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Direct UV cross-linking combined with mass spectrometry (MS) is a powerful tool to identify hitherto non-characterized protein-RNA contact sites in native ribonucleoprotein particles (RNPs) such as the spliceosome. Identification of contact sites after cross-linking is restricted by: (i) the relatively low cross-linking yield and (ii) the amount of starting material available for cross-linking studies. Therefore, the most critical step in such analyses is the extensive purification of the cross-linked peptide-RNA heteroconjugates from the excess of non-crosslinked material before MS analysis. Here, we describe a strategy that combines small-scale reversed-phase liquid chromatography (RP-HPLC) of UV-irradiated and hydrolyzed RNPs, immobilized metal-ion affinity chromatography (IMAC) to enrich cross-linked species and their analysis by matrix-assisted laser desorption/ionisation (MALDI) MS(/MS). In cases where no MS/MS analysis can be performed, treatment of the enriched fractions with alkaline phosphatase leads to unambiguous identification of the cross-linked species. We demonstrate the feasibility of this strategy by MS analysis of enriched peptide-RNA cross-links from UV-irradiated reconstituted [15.5K-61K-U4atac snRNA] snRNPs and native U1 snRNPs. Applying our approach to a partial complex of U2 snRNP allowed us to identify the contact site between the U2 snRNP-specific protein p14/SF3b14a and the branch-site interacting region (BSiR) of U2 snRNA.
Collapse
MESH Headings
- Alkaline Phosphatase
- Amino Acid Sequence
- Binding Sites
- Chromatography, Affinity
- Chromatography, Liquid/methods
- Computational Biology
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/isolation & purification
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/isolation & purification
- Ribonucleoprotein, U1 Small Nuclear/chemistry
- Ribonucleoprotein, U1 Small Nuclear/radiation effects
- Ribonucleoprotein, U2 Small Nuclear/chemistry
- Ribonucleoprotein, U2 Small Nuclear/radiation effects
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/radiation effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Ultraviolet Rays
Collapse
Affiliation(s)
- Eva Kühn-Hölsken
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Björn Sander
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group and Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- *To whom correspondence should be addressed.+49 551 2011060+49 551 2011197
| |
Collapse
|