Experimental comparison of connectivity measures with simulated EEG signals.
Med Biol Eng Comput 2012;
50:683-8. [PMID:
22614134 DOI:
10.1007/s11517-012-0911-y]
[Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Directional connectivity measures exist with different theoretical backgrounds, i.e., information theoretic, parametric-modeling based or phase related. In this paper, we perform the first comparison in this extend of a set of conventional and directed connectivity measures [cross-correlation, coherence, phase slope index (PSI), directed transfer function (DTF), partial-directed coherence (PDC) and transfer entropy (TE)] with eight-node simulation data based on real resting closed eye electroencephalogram (EEG) source signal. The ability of the measures to differentiate the direct causal connections from the non-causal connections was evaluated with the simulated data. Also, the effects of signal-to-noise ratio (SNR) and decimation were explored. All the measures were able to distinguish the direct causal interactions from the non-causal relations. PDC detected less non-causal connections compared to the other measures. Low SNR was tolerated better with DTF and PDC than with the other measures. Decimation affected most the results of TE, DTF and PDC. In conclusion, parametric-modeling-based measures (DTF, PDC) had the highest sensitivity of connections and tolerance to SNR in simulations based on resting closed eye EEG. However, decimation of data has to be carefully considered with these measures.
Collapse