An alternative framework for fluorescence correlation spectroscopy.
Nat Commun 2019;
10:3662. [PMID:
31413259 PMCID:
PMC6694112 DOI:
10.1038/s41467-019-11574-2]
[Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS), is a widely used tool routinely exploited for in vivo and in vitro applications. While FCS provides estimates of dynamical quantities, such as diffusion coefficients, it demands high signal to noise ratios and long time traces, typically in the minute range. In principle, the same information can be extracted from microseconds to seconds long time traces; however, an appropriate analysis method is missing. To overcome these limitations, we adapt novel tools inspired by Bayesian non-parametrics, which starts from the direct analysis of the observed photon counts. With this approach, we are able to analyze time traces, which are too short to be analyzed by existing methods, including FCS. Our new analysis extends the capability of single molecule fluorescence confocal microscopy approaches to probe processes several orders of magnitude faster and permits a reduction of photo-toxic effects on living samples induced by long periods of light exposure.
Fluorescence correlation spectroscopy is widely used for in vivo and in vitro applications, yet extracting information from experiments still requires long acquisition times. Here, the authors exploit Bayesian non-parametrics to directly analyze the output of confocal fluorescence experiments thereby probing physical processes on much faster timescales.
Collapse