1
|
Miller RNG, Costa Alves GS, Van Sluys MA. Plant immunity: unravelling the complexity of plant responses to biotic stresses. ANNALS OF BOTANY 2017; 119:681-687. [PMID: 28375427 PMCID: PMC5378191 DOI: 10.1093/aob/mcw284] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plants are constantly exposed to evolving pathogens and pests, with crop losses representing a considerable threat to global food security. As pathogen evolution can overcome disease resistance that is conferred by individual plant resistance genes, an enhanced understanding of the plant immune system is necessary for the long-term development of effective disease management strategies. Current research is rapidly advancing our understanding of the plant innate immune system, with this multidisciplinary subject area reflected in the content of the 18 papers in this Special Issue. SCOPE Advances in specific areas of plant innate immunity are highlighted in this issue, with focus on molecular interactions occurring between plant hosts and viruses, bacteria, phytoplasmas, oomycetes, fungi, nematodes and insect pests. We provide a focus on research across multiple areas related to pathogen sensing and plant immune response. Topics covered are categorized as follows: binding proteins in plant immunity; cytokinin phytohormones in plant growth and immunity; plant-virus interactions; plant-phytoplasma interactions; plant-fungus interactions; plant-nematode interactions; plant immunity in Citrus; plant peptides and volatiles; and assimilate dynamics in source/sink metabolism. CONCLUSIONS Although knowledge of the plant immune system remains incomplete, the considerable ongoing scientific progress into pathogen sensing and plant immune response mechanisms suggests far reaching implications for the development of durable disease resistance against pathogens and pests.
Collapse
Affiliation(s)
- Robert Neil Gerard Miller
- Universidade de Brasília, Instituto de Ciências Biológicas, 70910-900, Brasilia, DF, Brazil
- For correspondence. Email
| | | | - Marie-Anne Van Sluys
- Universidade de São Paulo, Instituto de Biociências, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Li Q, Li J, Sun JL, Ma XF, Wang TT, Berkey R, Yang H, Niu YZ, Fan J, Li Y, Xiao S, Wang WM. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1065. [PMID: 27493652 PMCID: PMC4955382 DOI: 10.3389/fpls.2016.01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/06/2016] [Indexed: 05/28/2023]
Abstract
The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.
Collapse
Affiliation(s)
- Qin Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Jing Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Jin-Long Sun
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Xian-Feng Ma
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- Institute for Bioscience and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, College ParkMD, USA
| | - Ting-Ting Wang
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Robert Berkey
- Institute for Bioscience and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, College ParkMD, USA
| | - Hui Yang
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- College of Agronomy, Sichuan Agricultural University at WenjiangChengdu, China
| | - Ying-Ze Niu
- College of Agronomy, Sichuan Agricultural University at WenjiangChengdu, China
| | - Jing Fan
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Yan Li
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, College ParkMD, USA
| | - Wen-Ming Wang
- Rice Research Institute and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| |
Collapse
|
3
|
Thakur S, Singh PK, Das A, Rathour R, Variar M, Prashanthi SK, Singh AK, Singh UD, Chand D, Singh NK, Sharma TR. Extensive sequence variation in rice blast resistance gene Pi54 makes it broad spectrum in nature. FRONTIERS IN PLANT SCIENCE 2015; 6:345. [PMID: 26052332 PMCID: PMC4440361 DOI: 10.3389/fpls.2015.00345] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 05/04/2023]
Abstract
Rice blast resistant gene, Pi54 cloned from rice line, Tetep, is effective against diverse isolates of Magnaporthe oryzae. In this study, we prospected the allelic variants of the dominant blast resistance gene from a set of 92 rice lines to determine the nucleotide diversity, pattern of its molecular evolution, phylogenetic relationships and evolutionary dynamics, and to develop allele specific markers. High quality sequences were generated for homologs of Pi54 gene. Using comparative sequence analysis, InDels of variable sizes in all the alleles were observed. Profiling of the selected sites of SNP (Single Nucleotide Polymorphism) and amino acids (N sites ≥ 10) exhibited constant frequency distribution of mutational and substitutional sites between the resistance and susceptible rice lines, respectively. A total of 50 new haplotypes based on the nucleotide polymorphism was also identified. A unique haplotype (H_3) was found to be linked to all the resistant alleles isolated from indica rice lines. Unique leucine zipper and tyrosine sulfation sites were identified in the predicted Pi54 proteins. Selection signals were observed in entire coding sequence of resistance alleles, as compared to LRR domains for susceptible alleles. This is a maiden report of extensive variability of Pi54 alleles in different landraces and cultivated varieties, possibly, attributing broad-spectrum resistance to Magnaporthe oryzae. The sequence variation in two consensus region: 163 and 144 bp were used for the development of allele specific DNA markers. Validated markers can be used for the selection and identification of better allele(s) and their introgression in commercial rice cultivars employing marker assisted selection.
Collapse
Affiliation(s)
- Shallu Thakur
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
- Department of Biotechnology, Himachal Pradesh UniversityShimla, India
| | - Pankaj K. Singh
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Alok Das
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - R. Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural UniversityPalampur, India
| | - M. Variar
- Central Rainfed Upland Rice Research Station, Central Rice Research InstituteHazaribagh, India
| | - S. K. Prashanthi
- School of Agricultural Biotechnology, University of Agricultural SciencesDharwad, India
| | - A. K. Singh
- Indian Agricultural Research InstituteNew Delhi, India
| | - U. D. Singh
- Indian Agricultural Research InstituteNew Delhi, India
| | - Duni Chand
- Department of Biotechnology, Himachal Pradesh UniversityShimla, India
| | - N. K. Singh
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
| | - Tilak R. Sharma
- National Research Centre on Plant Biotechnology, Pusa CampusNew Delhi, India
- *Correspondence: Tilak R. Sharma, National Research Centre on Plant Biotechnology, Pusa Campus, LBS Building, New Delhi-110012, India ;
| |
Collapse
|
4
|
Sáenz-Mata J, Jiménez-Bremont JF. HR4 gene is induced in the Arabidopsis-Trichoderma atroviride beneficial interaction. Int J Mol Sci 2012; 13:9110-9128. [PMID: 22942755 PMCID: PMC3430286 DOI: 10.3390/ijms13079110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 01/29/2023] Open
Abstract
Plants are constantly exposed to microbes, for this reason they have evolved sophisticated strategies to perceive and identify biotic interactions. Thus, plants have large collections of so-called resistance (R) proteins that recognize specific microbe factors as signals of invasion. One of these proteins is codified by the Arabidopsis thaliana HR4 gene in the Col-0 ecotype that is homologous to RPW8 genes present in the Ms-0 ecotype. In this study, we investigated the expression patterns of the HR4 gene in Arabidopsis seedlings interacting with the beneficial fungus Trichoderma atroviride. We observed the induction of the HR4 gene mainly at 96 hpi when the fungus interaction was established. Furthermore, we found that the HR4 gene was differentially regulated in interactions with the beneficial bacterium Pseudomonas fluorescens and the pathogenic bacterium P. syringae. When hormone treatments were applied to A. thaliana (Col-0), each hormone treatment induced changes in HR4 gene expression. On the other hand, the expression of the RPW8.1 and RPW8.2 genes of Arabidopsis ecotype Ms-0 in interaction with T. atroviride was assessed. Interestingly, these genes are interaction-responsive; in particular, the RPW8.1 gene shows a very high level of expression in the later stages of interaction. These results indicate that HR4 and RPW8 genes could play a role in the establishment of Arabidopsis interactions with beneficial microbes.
Collapse
Affiliation(s)
- Jorge Sáenz-Mata
- Division of Molecular Biology, Institute Potosino of Scientific and Technological Research, Camino a la Presa de San José 2055, Col. Lomas 4 sección, C.P. 78216, Apartado Postal 3-74 Tangamanga, San Luis Potosí, San Luis Potosí 78395, Mexico; E-Mail:
| | - Juan Francisco Jiménez-Bremont
- Division of Molecular Biology, Institute Potosino of Scientific and Technological Research, Camino a la Presa de San José 2055, Col. Lomas 4 sección, C.P. 78216, Apartado Postal 3-74 Tangamanga, San Luis Potosí, San Luis Potosí 78395, Mexico; E-Mail:
| |
Collapse
|