1
|
Zhou Q, Ellison CE, Kaiser VB, Alekseyenko AA, Gorchakov AA, Bachtrog D. The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLoS Biol 2013; 11:e1001711. [PMID: 24265597 PMCID: PMC3825665 DOI: 10.1371/journal.pbio.1001711] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
This study shows how young sex chromosomes have altered their chromatin structure in Drosophila, and what genomic changes have led to silencing of the Y, and hyper-transcription of the X. Sex chromosomes originated from autosomes but have evolved a highly specialized chromatin structure. Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed as a result of dosage compensation. Here, we dissect the molecular mechanisms and functional pressures driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome that formed the sex chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome. Sex chromosomes differ from non-sex chromosomes (“autosomes”) at the genomic, transcriptomic, and epigenomic level, yet the X and Y share a common evolutionary origin. The Drosophila Y chromosome is gene-poor and associated with a compact and transcriptionally inactive form of genetic material called heterochromatin. The X, in contrast, is enriched for activating chromatin marks and is consequently hyper-transcribed, a process thought to be an adaptation to decay and silencing of genes on the Y, resulting in “dosage compensation.” How sex chromosomes have altered their chromatin structure, and what genomic changes led to this dramatically different epigenetic makeup, however, has remained a mystery. By studying the genome, epigenome, and transcriptome of a species with a very recently evolved pair of sex chromosomes (the neo-X and neo-Y of a fruit fly, Drosophila miranda), we here recapitulate how both dosage compensation and heterochromatin formation evolve in Drosophila and establish several novel and important principles governing the evolution of chromatin structure. We dissect the evolutionary history of over 60 novel binding sites for the dosage compensation complex that evolved by natural selection on the neo-X within the last one million years. We show that the 21-bp consensus motifs for recruiting the dosage compensation complex were acquired by diverse molecular mechanisms along the neo-X, while the onset of heterochromatin formation is triggered by the accumulation of transposable elements, leading to silencing of adjacent neo-Y genes. We find that spreading of these chromatin modifications results in massive mis-expression of neo-sex linked genes, and that little correspondence exists between functional activity of genes on the neo-Y and whether they are dosage-compensated on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those that are heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities of the ancestral chromosome that formed the sex chromosome to evolve active versus repressive chromatin configurations. These findings have broad implications for current models of sex chromosome evolution.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Christopher E. Ellison
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Vera B. Kaiser
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Artyom A. Alekseyenko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrey A. Gorchakov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology, Novosibirsk, Russia
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Enrichment of HP1a on Drosophila chromosome 4 genes creates an alternate chromatin structure critical for regulation in this heterochromatic domain. PLoS Genet 2012; 8:e1002954. [PMID: 23028361 PMCID: PMC3447959 DOI: 10.1371/journal.pgen.1002954] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 07/31/2012] [Indexed: 02/06/2023] Open
Abstract
Chromatin environments differ greatly within a eukaryotic genome, depending on expression state, chromosomal location, and nuclear position. In genomic regions characterized by high repeat content and high gene density, chromatin structure must silence transposable elements but permit expression of embedded genes. We have investigated one such region, chromosome 4 of Drosophila melanogaster. Using chromatin-immunoprecipitation followed by microarray (ChIP-chip) analysis, we examined enrichment patterns of 20 histone modifications and 25 chromosomal proteins in S2 and BG3 cells, as well as the changes in several marks resulting from mutations in key proteins. Active genes on chromosome 4 are distinct from those in euchromatin or pericentric heterochromatin: while there is a depletion of silencing marks at the transcription start sites (TSSs), HP1a and H3K9me3, but not H3K9me2, are enriched strongly over gene bodies. Intriguingly, genes on chromosome 4 are less frequently associated with paused polymerase. However, when the chromatin is altered by depleting HP1a or POF, the RNA pol II enrichment patterns of many chromosome 4 genes shift, showing a significant decrease over gene bodies but not at TSSs, accompanied by lower expression of those genes. Chromosome 4 genes have a low incidence of TRL/GAGA factor binding sites and a low T(m) downstream of the TSS, characteristics that could contribute to a low incidence of RNA polymerase pausing. Our data also indicate that EGG and POF jointly regulate H3K9 methylation and promote HP1a binding over gene bodies, while HP1a targeting and H3K9 methylation are maintained at the repeats by an independent mechanism. The HP1a-enriched, POF-associated chromatin structure over the gene bodies may represent one type of adaptation for genes embedded in repetitive DNA.
Collapse
|
3
|
Luteijn MJ, van Bergeijk P, Kaaij LJT, Almeida MV, Roovers EF, Berezikov E, Ketting RF. Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans. EMBO J 2012; 31:3422-30. [PMID: 22850670 DOI: 10.1038/emboj.2012.213] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/12/2012] [Indexed: 11/09/2022] Open
Abstract
In recent years, the Piwi pathway has been shown to regulate the silencing of mobile genetic elements. However, we know little about how Piwi pathways impose silencing and even less about trans-generational stability of Piwi-induced silencing. We demonstrate that the Caenorhabditis elegans Piwi protein PRG-1 can initiate an extremely stable form of gene silencing on a transgenic, single-copy target. This type of silencing is faithfully maintained over tens of generations in the absence of a functional Piwi pathway. Interestingly, RNAi can also trigger permanent gene silencing of a single-copy transgene and the phenomenon will be collectively referred to as RNA-induced epigenetic silencing (RNAe). RNAe can act in trans and is dependent on endogenous RNAi factors. The involvement of factors known to act in nuclear RNAi and the fact that RNAe is accompanied by repressive chromatin marks indicate that RNAe includes a transcriptional silencing component. Our results demonstrate that, at least in C. elegans, the Piwi pathway can impose a state of gene silencing that borders on 'permanently silent'. Such a property may be more widely conserved among Piwi pathways in different animals.
Collapse
Affiliation(s)
- Maartje J Luteijn
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
4
|
Reyes-Turcu FE, Grewal SI. Different means, same end-heterochromatin formation by RNAi and RNAi-independent RNA processing factors in fission yeast. Curr Opin Genet Dev 2012; 22:156-63. [PMID: 22243696 PMCID: PMC3331891 DOI: 10.1016/j.gde.2011.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
Abstract
The assembly of heterochromatin in eukaryotic genomes is critical for diverse chromosomal events including regulation of gene expression, silencing of repetitive DNA elements, proper segregation of chromosomes and maintenance of genomic integrity. Previous studies have shown that noncoding RNAs and the RNA interference (RNAi) machinery promote the assembly of heterochromatin that serves as a multipurpose platform for targeting effectors involved in various chromosomal processes. Recent work has revealed that RNAi-independent mechanisms, involving RNA processing activities that utilize both noncoding and coding RNAs, operate in the assembly of heterochromatin. These findings have established that, in addition to coding for proteins, mRNAs also function as signaling molecules that modify chromatin structure by targeting heterochromatin assembly factors.
Collapse
Affiliation(s)
- Francisca E Reyes-Turcu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
5
|
The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 2011; 188:731-43. [PMID: 21515576 DOI: 10.1534/genetics.111.126995] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila Gene Disruption Project (GDP) has created a public collection of mutant strains containing single transposon insertions associated with different genes. These strains often disrupt gene function directly, allow production of new alleles, and have many other applications for analyzing gene function. Here we describe the addition of ∼7600 new strains, which were selected from >140,000 additional P or piggyBac element integrations and 12,500 newly generated insertions of the Minos transposon. These additions nearly double the size of the collection and increase the number of tagged genes to at least 9440, approximately two-thirds of all annotated protein-coding genes. We also compare the site specificity of the three major transposons used in the project. All three elements insert only rarely within many Polycomb-regulated regions, a property that may contribute to the origin of "transposon-free regions" (TFRs) in metazoan genomes. Within other genomic regions, Minos transposes essentially at random, whereas P or piggyBac elements display distinctive hotspots and coldspots. P elements, as previously shown, have a strong preference for promoters. In contrast, piggyBac site selectivity suggests that it has evolved to reduce deleterious and increase adaptive changes in host gene expression. The propensity of Minos to integrate broadly makes possible a hybrid finishing strategy for the project that will bring >95% of Drosophila genes under experimental control within their native genomic contexts.
Collapse
|
6
|
Labreuche Y, Veloso A, de la Vega E, Gross PS, Chapman RW, Browdy CL, Warr GW. Non-specific activation of antiviral immunity and induction of RNA interference may engage the same pathway in the Pacific white leg shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1209-1218. [PMID: 20600271 DOI: 10.1016/j.dci.2010.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Many questions remain unanswered regarding RNAi-based mechanisms and dsRNA-induced antiviral immune responses in penaeid shrimp. In this study, we report the characterization in the white leg shrimp Litopenaeus vannamei of RNAi pathway associated proteins Lv-Ago 1 and Lv-Ago 2, two members of the Argonaute family of proteins, as well as Lv-sid 1, the first shrimp homologue of Sid-1, a membrane channel-forming protein implicated in the cellular import of dsRNA. To decipher their functional implication in RNAi-related phenomena, we monitored their relative expression following stimulation by specific and non-specific RNA duplexes of diverse length. The findings show that the length of small RNA duplexes plays a critical role in the activation of both RNAi-related and innate antiviral responses. They also suggest that these two mechanisms of antiviral response may activate the same pathway, requiring Lv-Sid 1 and Lv-Ago 2 induction.
Collapse
Affiliation(s)
- Yannick Labreuche
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, 221 Ft. Johnson Road, Charleston, SC 29412, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS One 2010; 5:e12175. [PMID: 20730047 PMCID: PMC2921364 DOI: 10.1371/journal.pone.0012175] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/10/2010] [Indexed: 01/18/2023] Open
Abstract
Background RNA silencing is a common term for pathways utilizing small RNAs as sequence-specific guides to repress gene expression. Components of the RNA silencing machinery are involved in different aspects of chromatin function in numerous organisms. However, association of RNA silencing with chromatin in mammalian cells remains unclear. Methodology/Principal Findings Immunostaining of mitotic chromosomes with antibodies visualizing either endogenous or ectopically expressed Dicer in mammalian cells revealed association of the protein with ribosomal DNA (rDNA) repeats. Chromatin immunoprecipitations and bisulfite sequencing experiments indicated that Dicer is associated with transcribed regions of both active and silenced genes in rDNA arrays of interphase chromosomes. Metabolic labeling of the mouse embryonic stem (ES) cells lacking Dicer did not reveal apparent defect in rRNA biogenesis though pre-rRNA synthesis in these cells was decreased, likely as a consequence of their slower growth caused by the loss of miRNAs. We analyzed in detail chromatin structure of rDNA but did not find any epigenetic changes at rDNA loci in Dicer−/− ES cells. Instead, we found that rDNA methylation is rather low in primary tissues, contrasting with rDNA methylation patterns in transformed cell lines. Conclusion/Significance We found that Dicer, a key component of RNA silencing pathways, can be detected in association with rDNA chromatin in mammalian cells. The role of this particular localization of Dicer is not readily apparent since the enzyme is associated with rDNA genes regardless of their transcriptional activity. However, localization of Dicer to the transcribed region suggests that transcription may contribute to the Dicer deposition at rDNA chromatin. We hypothesize that Dicer functions in maintaining integrity of rDNA arrays.
Collapse
|
8
|
Sharakhova MV, George P, Brusentsova IV, Leman SC, Bailey JA, Smith CD, Sharakhov IV. Genome mapping and characterization of the Anopheles gambiae heterochromatin. BMC Genomics 2010; 11:459. [PMID: 20684766 PMCID: PMC3091655 DOI: 10.1186/1471-2164-11-459] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/04/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Heterochromatin plays an important role in chromosome function and gene regulation. Despite the availability of polytene chromosomes and genome sequence, the heterochromatin of the major malaria vector Anopheles gambiae has not been mapped and characterized. RESULTS To determine the extent of heterochromatin within the An. gambiae genome, genes were physically mapped to the euchromatin-heterochromatin transition zone of polytene chromosomes. The study found that a minimum of 232 genes reside in 16.6 Mb of mapped heterochromatin. Gene ontology analysis revealed that heterochromatin is enriched in genes with DNA-binding and regulatory activities. Immunostaining of the An. gambiae chromosomes with antibodies against Drosophila melanogaster heterochromatin protein 1 (HP1) and the nuclear envelope protein lamin Dm0 identified the major invariable sites of the proteins' localization in all regions of pericentric heterochromatin, diffuse intercalary heterochromatin, and euchromatic region 9C of the 2R arm, but not in the compact intercalary heterochromatin. To better understand the molecular differences among chromatin types, novel Bayesian statistical models were developed to analyze genome features. The study found that heterochromatin and euchromatin differ in gene density and the coverage of retroelements and segmental duplications. The pericentric heterochromatin had the highest coverage of retroelements and tandem repeats, while intercalary heterochromatin was enriched with segmental duplications. We also provide evidence that the diffuse intercalary heterochromatin has a higher coverage of DNA transposable elements, minisatellites, and satellites than does the compact intercalary heterochromatin. The investigation of 42-Mb assembly of unmapped genomic scaffolds showed that it has molecular characteristics similar to cytologically mapped heterochromatin. CONCLUSIONS Our results demonstrate that Anopheles polytene chromosomes and whole-genome shotgun assembly render the mapping and characterization of a significant part of heterochromatic scaffolds a possibility. These results reveal the strong association between characteristics of the genome features and morphological types of chromatin. Initial analysis of the An. gambiae heterochromatin provides a framework for its functional characterization and comparative genomic analyses with other organisms.
Collapse
|
9
|
Emelyanov AV, Konev AY, Vershilova E, Fyodorov DV. Protein complex of Drosophila ATRX/XNP and HP1a is required for the formation of pericentric beta-heterochromatin in vivo. J Biol Chem 2010; 285:15027-15037. [PMID: 20154359 DOI: 10.1074/jbc.m109.064790] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATRX belongs to the family of SWI2/SNF2-like ATP-dependent nucleosome remodeling molecular motor proteins. Mutations of the human ATRX gene result in a severe genetic disorder termed X-linked alpha-thalassemia mental retardation (ATR-X) syndrome. Here we perform biochemical and genetic analyses of the Drosophila melanogaster ortholog of ATRX. The loss of function allele of the Drosophila ATRX/XNP gene is semilethal. Drosophila ATRX is expressed throughout development in two isoforms, p185 and p125. ATRX185 and ATRX125 form distinct multisubunit complexes in fly embryo. The ATRX185 complex comprises p185 and heterochromatin protein HP1a. Consistently, ATRX185 but not ATRX125 is highly concentrated in pericentric beta-heterochromatin of the X chromosome in larval cells. HP1a strongly stimulates biochemical activities of ATRX185 in vitro. Conversely, ATRX185 is required for HP1a deposition in pericentric beta-heterochromatin of the X chromosome. The loss of function allele of the ATRX/XNP gene and mutant allele that does not express p185 are strong suppressors of position effect variegation. These results provide evidence for essential biological functions of Drosophila ATRX in vivo and establish ATRX as a major determinant of pericentric beta-heterochromatin identity.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alexander Y Konev
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Elena Vershilova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
10
|
Riddle NC, Shaffer CD, Elgin SCR. A lot about a little dot - lessons learned from Drosophila melanogaster chromosome 4. Biochem Cell Biol 2009; 87:229-41. [PMID: 19234537 DOI: 10.1139/o08-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fourth chromosome of Drosophila melanogaster has a number of unique properties that make it a convenient model for the study of chromatin structure. Only 4.2 Mb overall, the 1.2 Mb distal arm of chromosome 4 seen in polytene chromosomes combines characteristics of heterochromatin and euchromatin. This domain has a repeat density of ~35%, comparable to some pericentric chromosome regions, while maintaining a gene density similar to that of the other euchromatic chromosome arms. Studies of position-effect variegation have revealed that heterochromatic and euchromatic domains are interspersed on chromosome 4, and both cytological and biochemical studies have demonstrated that chromosome 4 is associated with heterochromatic marks, such as heterochromatin protein 1 and histone 3 lysine 9 methylation. Chromosome 4 is also marked by POF (painting-of-fourth), a chromosome 4-specific chromosomal protein, and utilizes a dedicated histone methyltransferase, EGG. Studies of chromosome 4 have helped to shape our understanding of heterochromatin domains and their establishment and maintenance. In this review, we provide a synthesis of the work to date and an outlook to the future.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
11
|
Role of chromatin states in transcriptional memory. Biochim Biophys Acta Gen Subj 2009; 1790:445-55. [PMID: 19236904 DOI: 10.1016/j.bbagen.2009.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 12/16/2022]
Abstract
Establishment of cellular memory and its faithful propagation is critical for successful development of multicellular organisms. As pluripotent cells differentiate, choices in cell fate are inherited and maintained by their progeny throughout the lifetime of the organism. A major factor in this process is the epigenetic inheritance of specific transcriptional states or transcriptional memory. In this review, we discuss chromatin transitions and mechanisms by which they are inherited by subsequent generations. We also discuss illuminating cases of cellular memory in budding yeast and evaluate whether transcriptional memory in yeast is nuclear or cytoplasmically inherited.
Collapse
|
12
|
Lu J, Gilbert DM. Cell cycle regulated transcription of heterochromatin in mammals vs. fission yeast: functional conservation or coincidence? Cell Cycle 2008; 7:1907-10. [PMID: 18604169 PMCID: PMC2710769 DOI: 10.4161/cc.7.13.6206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although it is tempting to speculate that the transcription-dependent heterochromatin assembly pathway found in fission yeast may operate in higher mammals, transcription of heterochromatin has been difficult to substantiate in mammalian cells. We recently demonstrated that transcription from the mouse pericentric heterochromatin major (gamma) satellite repeats is under cell cycle control, being sharply downregulated at the metaphase to anaphase transition and resuming in late G(1)-phase dependent upon passage through the restriction point. The highest rates of transcription were in early S-phase and again in mitosis with different RNA products detected at each of these times.(1) Importantly, differences in the percentage of cells in G(1)-phase can account for past discrepancies in the detection of major satellite transcripts and suggest that pericentric heterochromatin transcription takes place in all proliferating mammalian cells. A similar cell cycle regulation of heterochromatin transcription has now been shown in fission yeast,(2,3) providing further support for a conserved mechanism. However, there are still fundamental differences between these two systems that preclude the identification of a functional or mechanistic link.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science; Florida State University; Tallahassee, Florida
| | - David M. Gilbert
- Department of Biological Science; Florida State University; Tallahassee, Florida
| |
Collapse
|