1
|
Zhang X, Li S, Li X, Song M, Ma S, Tian Y, Gao L. Peat-based hairy root transformation using Rhizobium rhizogenes as a rapid and efficient tool for easily exploring potential genes related to root-knot nematode parasitism and host response. PLANT METHODS 2023; 19:22. [PMID: 36871001 PMCID: PMC9985853 DOI: 10.1186/s13007-023-01003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) pose a worldwide threat to agriculture of many crops including cucumber. Genetic transformation (GT) has emerged as a powerful tool for exploration of plant-RKN interactions and genetic improvement of RKN resistance. However, it is usually difficult to achieve a highly efficient and stable GT protocol for most crops due to the complexity of this process. RESULTS Here we firstly applied the hairy root transformation system in exploring root-RKN interactions in cucumber plants and developed a rapid and efficient tool transformation using Rhizobium rhizogenes strain K599. A solid-medium-based hypocotyl-cutting infection (SHI) method, a rockwool-based hypocotyl-cutting infection (RHI) method, and a peat-based cotyledon-node injection (PCI) method was evaluated for their ability to induce transgenic roots in cucumber plants. The PCI method generally outperformed the SHI and RHI methods for stimulating more transgenic roots and evaluating the phenotype of roots during nematode parasitism. Using the PCI method, we generated the CRISPR/Cas9-mediated malate synthase (MS) gene (involved in biotic stress responses) knockout plant and the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16, a potential host susceptibility gene for RKN) promoter-driven GUS expressing plant. Knockout of MS in hairy roots resulted in effective resistance against RKNs, while nematode infection induced a strong expression of LBD16-driven GUS in root galls. This is the first report of a direct link between these genes and RKN performance in cucumber. CONCLUSION Taken together, the present study demonstrates that the PCI method allows fast, easy and efficient in vivo studies of potential genes related to root-knot nematode parasitism and host response.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Mengyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Zhou Y, Zhao D, Duan Y, Chen L, Fan H, Wang Y, Liu X, Chen LQ, Xuan Y, Zhu X. AtSWEET1 negatively regulates plant susceptibility to root-knot nematode disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1010348. [PMID: 36824200 PMCID: PMC9941640 DOI: 10.3389/fpls.2023.1010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the β-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.
Collapse
Affiliation(s)
- Yuan Zhou
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agriculture University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agriculture University, Shenyang, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yuanhu Xuan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
3
|
Tavoillot J, Mateille T, Ali N, Chappé AM, Martin JF. Early Detection of the Root-Knot Nematode Meloidogyne hapla Through Developing a Robust Quantitative PCR Approach Compliant with the Minimum Information for Publication of Quantitative Real-Time PCR Experiments Guidelines. PLANT DISEASE 2021; 105:2836-2843. [PMID: 33900116 DOI: 10.1094/pdis-11-20-2408-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Root-knot nematodes (RKNs) are major threats to crops through attacking the roots, which induces an abnormal development of the plant. Meloidogyne hapla is of particular concern, as it is currently expanding its distribution area and displays a wide host range. Effective plant protection against this RKN requires early detection, as even a single individual can cause severe economic losses on susceptible crops. Molecular tools are of particular value for this purpose, and among them, quantitative PCR (qPCR) presents many advantages (i.e., sensitivity, specificity, and rapidity of diagnosis at a reduced cost). Although a few studies have already been proposed for detecting M. hapla through this technique, they lack experimental details and performance testing, suffer from low taxonomic resolution, and/or require expensive hydrolysis probes. Here, we propose a qPCR detection method that uses SYBR Green with developed primers amplifying a fragment of the cytochrome oxidase I mitochondrial region. The method was developed and evaluated following the minimum information for publication of quantitative real-time PCR experiments (MIQE) guidelines to ensure its quality (i.e., sensitivity, specificity, repeatability, reproducibility, and robustness). The results demonstrate that the newly developed method fulfills its goals, as it proved specific to M. hapla and allowed for a reproductible detection level as low as 1.25 equivalent of a juvenile individual. All criteria associated with the MIQE guidelines were also met, so the method is of general use for the reliable early detection of M. hapla.
Collapse
Affiliation(s)
- Johannes Tavoillot
- Biology Center for Population Management (CBGP), Université de Montpellier, Center for International Cooperation in Agricultural Research for Development (CIRAD), National Institute for Agricultural Research (INRAE), Institut Agro, Institute of Research for Development (IRD) Montpellier, 34988 Montpellier, France
| | - Thierry Mateille
- Biology Center for Population Management (CBGP), Université de Montpellier, Center for International Cooperation in Agricultural Research for Development (CIRAD), National Institute for Agricultural Research (INRAE), Institut Agro, Institute of Research for Development (IRD) Montpellier, 34988 Montpellier, France
| | - Nadine Ali
- Department of Plant Protection, Tishreen University, Tishreen, Syria
| | - Anne-Marie Chappé
- Nematology Unit, Anses, French Agency for Food, Environmental and Occupational Health and Safety/Plant Health Laboratory, 35653 Le Rheu, France
| | - Jean-François Martin
- Biology Center for Population Management (CBGP), Université de Montpellier, Center for International Cooperation in Agricultural Research for Development (CIRAD), National Institute for Agricultural Research (INRAE), Institut Agro, Institute of Research for Development (IRD) Montpellier, 34988 Montpellier, France
| |
Collapse
|
4
|
Zhou Y, Zhao D, Shuang L, Xiao D, Xuan Y, Duan Y, Chen L, Wang Y, Liu X, Fan H, Zhu X. Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection. Int J Mol Sci 2020; 21:ijms21030848. [PMID: 32013011 PMCID: PMC7037758 DOI: 10.3390/ijms21030848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Meloidogyne incognita and Meloidogyne graminicola are root-knot nematodes (RKNs) infecting rice (Oryza sativa L.) roots and severely decreasing yield, whose mechanisms of action remain unclear. We investigated RKN invasion and development in rice roots through RNA-seq transcriptome analysis. The results showed that 952 and 647 genes were differently expressed after 6 (invasion stage) and 18 (development stage) days post inoculation, respectively. Gene annotation showed that the differentially expressed genes were classified into diverse metabolic and stress response categories. Furthermore, phytohormone, transcription factor, redox signaling, and defense response pathways were enriched upon RKN infection. RNA-seq validation using qRT-PCR confirmed that CBL-interacting protein kinase (CIPK) genes (CIPK5, 8, 9, 11, 14, 23, 24, and 31) as well as brassinosteroid (BR)-related genes (OsBAK1, OsBRI1, D2, and D11) were altered by RKN infection. Analysis of the CIPK9 mutant and overexpressor indicated that the RKN populations were smaller in cipk9 and larger in CIPK9 OX, while more galls were produced in CIPK9 OX plant roots than the in wild-type roots. Significantly fewer numbers of second-stage infective juveniles (J2s) were observed in the plants expressing the BR biosynthesis gene D2 mutant and the BR receptor BRI1 activation-tagged mutant (bri1-D), and fewer galls were observed in bri1-D roots than in wild-type roots. The roots of plants expressing the regulator of ethylene signaling ERS1 (ethylene response sensor 1) mutant contained higher numbers of J2s and developed more galls compared with wild-type roots, suggesting that these signals function in RKN invasion or development. Our findings broaden our understanding of rice responses to RKN invasion and provide useful information for further research on RKN defense mechanisms.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Di Zhao
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Li Shuang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi 716000, China;
| | - Dongxue Xiao
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Yuanhu Xuan
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Yuxi Duan
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Lijie Chen
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Yuanyuan Wang
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Xiaoyu Liu
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Haiyan Fan
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
| | - Xiaofeng Zhu
- College of Plant Protection, Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; (Y.Z.); (D.Z.); (D.X.); (Y.X.); (Y.D.); (L.C.); (Y.W.); (X.L.); (H.F.)
- Correspondence: ; Tel.: +86-135-1603-9056
| |
Collapse
|
5
|
Yang X, Song J, Wu X, Xie L, Liu X, Li G. Identification of unhealthy Panax notoginseng from different geographical origins by means of multi-label classification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117243. [PMID: 31226616 DOI: 10.1016/j.saa.2019.117243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Root-knot nematode is a common plant-parasitic pest with a highly destructive that infects more than 2000 plant species. Panax notoginseng (P. notoginseng) is one of the most susceptible traditional medicine. More importantly, it is difficult to distinguish the powders of P. notoginseng infected with root-knot nematode from those of healthy P. notoginseng due to the color and shape are same after being ground into powder. In this paper, Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) was used to identify P. notoginseng samples. Multiplicative scatter correction (MSC) was applied to preprocess the spectral data. Competitive adaptive reweighted sampling (CARS) and successive projection algorithm (SPA) were employed to select feature variables. Density-based spatial clustering of application with noise (DBSCAN) was adopted to discover groups within the data. Also, we found that the geographical origin is a pivotal factor to consider when identifying unhealthy P. notoginseng. Therefore, we introduced a novel multi-label classification (MLC) method to identify healthy and unhealthy P. notoginseng powders from three different geographical origins. In addition, binary relevance method (BR), classifier chain (CC), ensembles of classifier chains (ECC), and multilayer perceptron classifier (MLPC) were applied to create classification models, ECC exhibits superior performance in particular.
Collapse
Affiliation(s)
- Xiaodong Yang
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Jie Song
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Xin Wu
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Lin Xie
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Xuwen Liu
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Guanglin Li
- College of Engineering and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Cabrera J, Díaz-Manzano FE, Sanchez M, Rosso MN, Melillo T, Goh T, Fukaki H, Cabello S, Hofmann J, Fenoll C, Escobar C. A role for LATERAL ORGAN BOUNDARIES-DOMAIN 16 during the interaction Arabidopsis-Meloidogyne spp. provides a molecular link between lateral root and root-knot nematode feeding site development. THE NEW PHYTOLOGIST 2014; 203:632-645. [PMID: 24803293 DOI: 10.1111/nph.12826] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/21/2014] [Indexed: 05/08/2023]
Abstract
Plant endoparasitic nematodes induce the formation of their feeding cells by injecting effectors from the esophageal glands into root cells. Although vascular cylinder cells seem to be involved in the formation of root-knot nematode (RKN) feeding structures, molecular evidence is scarce. We address the role during gall development of LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16), a key component of the auxin pathway leading to the divisions in the xylem pole pericycle (XPP) for lateral root (LR) formation. Arabidopsis T-DNA tagged J0192 and J0121 XPP marker lines, LBD16 and DR5::GUS promoter lines, and isolated J0192 protoplasts were assayed for nematode-dependent gene expression. Infection tests in LBD16 knock-out lines were used for functional analysis. J0192 and J0121 lines were activated in early developing galls and giant cells (GCs), resembling the pattern of the G2/M-transition specific ProC yc B 1;1 :CycB1;1(NT)-GUS line. LBD16 was regulated by auxins in galls as in LRs, and induced by RKN secretions. LBD16 loss of function mutants and a transgenic line with defective XPP cells showed a significantly reduced infection rate. The results show that genes expressed in the dividing XPP, particularly LBD16, are important for gall formation, as they are for LR development.
Collapse
Affiliation(s)
- Javier Cabrera
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Av. Carlos III s/n, E-45071, Toledo, Spain
| | - Fernando E Díaz-Manzano
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Av. Carlos III s/n, E-45071, Toledo, Spain
| | - María Sanchez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Av. Carlos III s/n, E-45071, Toledo, Spain
| | - Marie-Noëlle Rosso
- INRA, Aix-Marseille Université, UMR 1163, Biotechnologie des Champignons Filamenteux, F-13009, Marseille, France
| | - Teresa Melillo
- Istituto per la Protezione de lle Piante, CNR, 70126, Bari, Italy
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Susana Cabello
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau, A-3430, Austria
| | - Julia Hofmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau, A-3430, Austria
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Av. Carlos III s/n, E-45071, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Av. Carlos III s/n, E-45071, Toledo, Spain
| |
Collapse
|
7
|
Zhang S, Schliephake E, Budahn H. Chromosomal assignment of oil radish resistance to Meloidogyne incognita and M. javanica using a set of disomic rapeseed-radish chromosome addition lines. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Root-knot nematodes cause severe damage to a great number of crops worldwide. The use of nematicides is restricted due to environmental and toxicological risks and control of the pest by crop rotation is difficult because root-knot nematodes have a very wide range of host plants. To verify the strategy of converting rapeseed from a tolerant host for Meloidogyne incognita and M. javanica to a resistant catch crop, a complete set of nine disomic rapeseed-radish chromosome addition lines (lines A to I) was tested for resistance against these Meloidogyne species. Thirty plants of each addition line and the rapeseed and radish parents as control were infected with 2500 second-stage juveniles per plant. The presence of the alien radish chromosome was confirmed by chromosome-specific microsatellite markers. After cultivation of the inoculated plants for 10 weeks in a climatic chamber the root systems were washed. The egg masses were stained with Cochenille Red and counted. The radish parent A24 was found to be resistant to M. incognita (2.4 egg masses (g root)−1) and M. javanica (0.4 egg masses (g root)−1) compared to 53.3 and 33.1 egg masses (g root)−1 for the susceptible rapeseed parent cv. Madora. The radish chromosome e was shown to be the carrier of radish root-knot nematode resistance with an average number of <1 egg mass (g root)−1 for M. incognita and M. javanica. The disomic addition lines B, C, D, G, H and I and the parental radish line A107 were classified as highly susceptible, whereas the addition lines A and F showed significantly reduced susceptibility for M. incognita but not for M. javanica. To our knowledge this is the first study on resistance effects of individual radish chromosomes in a rapeseed background against these root-knot nematodes.
Collapse
Affiliation(s)
- Shaosong Zhang
- Yunnan Academy of Agricultural Sciences, Biotechnology & Germplasm Resources Institute, Key Lab of South-Western Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture: Yunnan Provincial Key Lab of Agricultural Biotechnology, Xueyun Road 9, Kunming 650223, P.R. China
| | - Edgar Schliephake
- Julius Kühn-Institut, Federal Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Strasse 27, D-06484 Quedlinburg, Germany
| | - Holger Budahn
- Julius Kühn-Institut, Federal Centre for Cultivated Plants, Institute for Breeding Research on Horticultural Crops, Erwin-Baur-Strasse 27, D-06484 Quedlinburg, Germany
| |
Collapse
|