1
|
Li H, Fan Y. Cascaded convolutional networks for unsupervised brain tissue segmentation and bias field estimation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12655:1265506. [PMID: 38250086 PMCID: PMC10795010 DOI: 10.1117/12.2676893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Brain tissue segmentation from MR images is a critical step for quantifying the brain morphology in neuroimaging studies. While deep learning (DL) based brain tissue segmentation methods have achieved promising performance, most of them are built upon supervised learning and therefore their performance is bounded by the training data used and limited by the small size of datasets with manual segmentation labels. To leverage the large amount of unlabeled brain imaging data, we develop an unsupervised DL model for joint brain tissue segmentation and bias field estimation using cascaded convolutional networks. The proposed DL model consists of multiple cascaded bias field estimation modules and one segmentation module. The bias field estimation modules are applied to the input image for estimating the bias field and generating a bias-free image recursively, and the bias field corrected image is then fed into the segmentation module to obtain the brain tissue segmentation result. A Gaussian mixture model is adopted to characterize the bias-free image with tissue-specific intensity statistics and the model fitting error is adopted as the loss function to guide the optimization of the model parameters progressively in an unsupervised setting. We have evaluated the proposed method on the HCP-Aging and HCP-Development datasets. Quantitative results have demonstrated that our unsupervised DL model could obtain competitive bias field correction and segmentation performance, compared with state-of-the-art bias field correction methods and unsupervised segmentation methods.
Collapse
Affiliation(s)
- Hongming Li
- Center for Biomedical Image Computing and Analytics
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Alley S, Jackson E, Olivié D, Van der Heide UA, Ménard C, Kadoury S. Effect of magnetic resonance imaging pre-processing on the performance of model-based prostate tumor probability mapping. Phys Med Biol 2022; 67. [PMID: 36223780 DOI: 10.1088/1361-6560/ac99b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Objective. Multi-parametric magnetic resonance imaging (mpMRI) has become an important tool for the detection of prostate cancer in the past two decades. Despite the high sensitivity of MRI for tissue characterization, it often suffers from a lack of specificity. Several well-established pre-processing tools are publicly available for improving image quality and removing both intra- and inter-patient variability in order to increase the diagnostic accuracy of MRI. To date, most of these pre-processing tools have largely been assessed individually. In this study we present a systematic evaluation of a multi-step mpMRI pre-processing pipeline to automate tumor localization within the prostate using a previously trained model.Approach. The study was conducted on 31 treatment-naïve prostate cancer patients with a PI-RADS-v2 compliant mpMRI examination. Multiple methods were compared for each pre-processing step: (1) bias field correction, (2) normalization, and (3) deformable multi-modal registration. Optimal parameter values were estimated for each step on the basis of relevant individual metrics. Tumor localization was then carried out via a model-based approach that takes both mpMRI and prior clinical knowledge features as input. A sequential optimization approach was adopted for determining the optimal parameters and techniques in each step of the pipeline.Main results. The application of bias field correction alone increased the accuracy of tumor localization (area under the curve (AUC) = 0.77;p-value = 0.004) over unprocessed data (AUC = 0.74). Adding normalization to the pre-processing pipeline further improved diagnostic accuracy of the model to an AUC of 0.85 (p-value = 0.000 12). Multi-modal registration of apparent diffusion coefficient images to T2-weighted images improved the alignment of tumor locations in all but one patient, resulting in a slight decrease in accuracy (AUC = 0.84;p-value = 0.30).Significance. Overall, our findings suggest that the combined effect of multiple pre-processing steps with optimal values has the ability to improve the quantitative classification of prostate cancer using mpMRI. Clinical trials: NCT03378856 and NCT03367702.
Collapse
Affiliation(s)
| | - Edward Jackson
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Damien Olivié
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | | | - Cynthia Ménard
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Samuel Kadoury
- Polytechnique Montréal, Montréal, Québec, Canada.,Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Research on Optimization Scheme for Blocking Artifacts after Patch-Based Medical Image Reconstruction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2177159. [PMID: 35959350 PMCID: PMC9357777 DOI: 10.1155/2022/2177159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Due to limitations of computer resources, when utilizing a neural network to process an image with a high resolution, the typical processing approach is to slice the original image. However, because of the influence of zero-padding in the edge component during the convolution process, the central part of the patch often has more accurate feature information than the edge part, resulting in image blocking artifacts after patch stitching. We studied this problem in this paper and proposed a fusion method that assigns a weight to each pixel in a patch using a truncated Gaussian function as the weighting function. In this method, we used the weighting function to transform the Euclidean-distance between a point in the overlapping part and the central point of the patch where the point was located into a weight coefficient. With increasing distance, the value of the weight coefficient decreased. Finally, the reconstructed image was obtained by weighting. We employed the bias correction model to evaluate our method on the simulated database BrainWeb and the real dataset HCP (Human Connectome Project). The results show that the proposed method is capable of effectively removing blocking artifacts and obtaining a smoother bias field. To verify the effectiveness of our algorithm, we employed a denoising model to test it on the IXI-Guys human dataset. Qualitative and quantitative evaluations of both models show that the fusion method proposed in this paper can effectively remove blocking artifacts and demonstrates superior performance compared to five commonly available and state-of-the-art fusion methods.
Collapse
|
4
|
Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B. 3D Deep Learning on Medical Images: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5097. [PMID: 32906819 PMCID: PMC7570704 DOI: 10.3390/s20185097] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
The rapid advancements in machine learning, graphics processing technologies and the availability of medical imaging data have led to a rapid increase in the use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for the analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, we provide a brief mathematical description of 3D CNN and provide the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models in general) and possible future trends in the field.
Collapse
Affiliation(s)
- Satya P. Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore; (S.P.S.); (B.G.)
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore
| | - Lipo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore;
| | - Sukrit Gupta
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.G.); (H.G.)
| | - Haveesh Goli
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.G.); (H.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore; (S.P.S.); (B.G.)
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 608232, Singapore; (S.P.S.); (B.G.)
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| |
Collapse
|
5
|
|
6
|
Subudhi A, Jena SS, Sabut S. Automated Detection of Brain Stroke in MRI with Hybrid Fuzzy C-Means Clustering and Random Forest Classifier. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS 2019. [DOI: 10.1142/s1469026819500184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuroimaging investigation is an essential parameter to detect infarct lesion in stroke patients. Precise detection of brain lesions is an important task related to impaired behavior. In this paper, we aimed to develop an automatic method to segment and classify infarct lesion in diffusion-weighted imaging (DWI) of brain MRI. The method includes hybrid fuzzy [Formula: see text]-means (HFCM) clustering in which the structure of [Formula: see text]-means clustering is modified with rough sets and fuzzy sets to improve the segmentation performance with self-adjusted intensity thresholds. Quantitative evaluation was carried out on 128 MRI slices of brain image collected from ischemic stroke patients at the Department of Radiology, IMS and SUM Hospital, Bhubaneswar. The informative statistical features have been extracted using gray-level co-occurrence matrix (GLCM) and used to classify the types of stroke infarct according to the Oxfordshire Community Stroke Project (OCSP) classification. The parameters such as accuracy, Dice similarity index (DSI) and Jaccard index (JI) were utilized to evaluate the effectiveness of the proposed method in detecting the stroke lesions. The segmentation method achieved the average accuracy, DSI and JI of 96.8%, 95.8% and 92.2%, respectively, in support vector machine (SVM) classifier. The obtained results are higher in terms of random forest (RF) classification. With a high Dice coefficient of 0.958 and other evaluated parameters, the proposed method outperforms earlier published results.
Collapse
Affiliation(s)
- Asit Subudhi
- Department of Electronics and Communication Engineering, Faculty of Engineering and Technology, Institute of Technical Education and Research, SOA Deemed to be University, Khandagiri, Bhubaneswar 751030, Odisha, India
| | - Subhransu S. Jena
- Department of Neurology, All India Institute of Medical Sciences Bhubaneswar, Patrapada, Bhubaneswar 751019, Odisha, India
| | - Sukanta Sabut
- School of Electronics Engineering, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India
| |
Collapse
|
7
|
Su KH, Friel HT, Kuo JW, Al Helo R, Baydoun A, Stehning C, Crisan AN, Traughber MS, Devaraj A, Jordan DW, Qian P, Leisser A, Ellis RJ, Herrmann KA, Avril N, Traughber BJ, Muzic RF. UTE-mDixon-based thorax synthetic CT generation. Med Phys 2019; 46:3520-3531. [PMID: 31063248 DOI: 10.1002/mp.13574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/02/2019] [Accepted: 04/27/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Accurate photon attenuation assessment from MR data remains an unmet challenge in the thorax due to tissue heterogeneity and the difficulty of MR lung imaging. As thoracic tissues encompass the whole physiologic range of photon absorption, large errors can occur when using, for example, a uniform, water-equivalent or a soft-tissue-only approximation. The purpose of this study was to introduce a method for voxel-wise thoracic synthetic CT (sCT) generation from MR data attenuation correction (AC) for PET/MR or for MR-only radiation treatment planning (RTP). METHODS Acquisition: A radial stack-of-stars combining ultra-short-echo time (UTE) and modified Dixon (mDixon) sequence was optimized for thoracic imaging. The UTE-mDixon pulse sequence collects MR signals at three TE times denoted as UTE, Echo1, and Echo2. Three-point mDixon processing was used to reconstruct water and fat images. Bias field correction was applied in order to avoid artifacts caused by inhomogeneity of the MR magnetic field. ANALYSIS Water fraction and R2* maps were estimated using the UTE-mDixon data to produce a total of seven MR features, that is UTE, Echo1, Echo2, Dixon water, Dixon fat, Water fraction, and R2*. A feature selection process was performed to determine the optimal feature combination for the proposed automatic, 6-tissue classification for sCT generation. Fuzzy c-means was used for the automatic classification which was followed by voxel-wise attenuation coefficient assignment as a weighted sum of those of the component tissues. Performance evaluation: MR data collected using the proposed pulse sequence were compared to those using a traditional two-point Dixon approach. Image quality measures, including image resolution and uniformity, were evaluated using an MR ACR phantom. Data collected from 25 normal volunteers were used to evaluate the accuracy of the proposed method compared to the template-based approach. Notably, the template approach is applicable here, that is normal volunteers, but may not be robust enough for patients with pathologies. RESULTS The free breathing UTE-mDixon pulse sequence yielded images with quality comparable to those using the traditional breath holding mDixon sequence. Furthermore, by capturing the signal before T2* decay, the UTE-mDixon image provided lung and bone information which the mDixon image did not. The combination of Dixon water, Dixon fat, and the Water fraction was the most robust for tissue clustering and supported the classification of six tissues, that is, air, lung, fat, soft tissue, low-density bone, and dense bone, used to generate the sCT. The thoracic sCT had a mean absolute difference from the template-based (reference) CT of less than 50 HU and which was better agreement with the reference CT than the results produced using the traditional Dixon-based data. CONCLUSION MR thoracic acquisition and analyses have been established to automatically provide six distinguishable tissue types to generate sCT for MR-based AC of PET/MR and for MR-only RTP.
Collapse
Affiliation(s)
- Kuan-Hao Su
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jung-Wen Kuo
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Rose Al Helo
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Physics, Case Western Reserve University, Cleveland, OH, USA
| | - Atallah Baydoun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Internal Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Department of Internal Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Adina N Crisan
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | | | - David W Jordan
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Pengjiang Qian
- School of Digital Media, Jiangnan University, Wuxi, Jiangsu, China
| | - Asha Leisser
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rodney J Ellis
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA.,Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Karin A Herrmann
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Norbert Avril
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Bryan J Traughber
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA.,Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiation Oncology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Raymond F Muzic
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, Case Western Reserve University, Cleveland, OH, USA.,Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Alam M, Toslak D, Lim JI, Yao X. OCT feature analysis guided artery-vein differentiation in OCTA. BIOMEDICAL OPTICS EXPRESS 2019; 10:2055-2066. [PMID: 31061771 PMCID: PMC6484971 DOI: 10.1364/boe.10.002055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 05/24/2023]
Abstract
Differential artery-vein analysis promises better sensitivity for retinal disease detection and classification. However, clinical optical coherence tomography angiography (OCTA) instruments lack the function of artery-vein differentiation. This study aims to verify the feasibility of using OCT intensity feature analysis to guide artery-vein differentiation in OCTA. Four OCT intensity profile features, including i) ratio of vessel width to central reflex, ii) average of maximum profile brightness, iii) average of median profile intensity, and iv) optical density of vessel boundary intensity compared to background intensity, are used to classify artery-vein source nodes in OCT. A blood vessel tracking algorithm is then employed to automatically generate the OCT artery-vein map. Given the fact that OCT and OCTA are intrinsically reconstructed from the same raw spectrogram, the OCT artery-vein map is able to guide artery-vein differentiation in OCTA directly.
Collapse
Affiliation(s)
- Minhaj Alam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Devrim Toslak
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jennifer I. Lim
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Brain Tissue Segmentation and Bias Field Correction of MR Image Based on Spatially Coherent FCM with Nonlocal Constraints. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:4762490. [PMID: 30944578 PMCID: PMC6421818 DOI: 10.1155/2019/4762490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/11/2019] [Indexed: 11/25/2022]
Abstract
Influenced by poor radio frequency field uniformity and gradient-driven eddy currents, intensity inhomogeneity (or bias field) and noise appear in brain magnetic resonance (MR) image. However, some traditional fuzzy c-means clustering algorithms with local spatial constraints often cannot obtain satisfactory segmentation performance. Therefore, an objective function based on spatial coherence for brain MR image segmentation and intensity inhomogeneity correction simultaneously is constructed in this paper. First, a novel similarity measure including local neighboring information is designed to improve the separability of MR data in Gaussian kernel mapping space without image smoothing, and the similarity measure incorporates the spatial distance and grayscale difference between cluster centroid and its neighborhood pixels. Second, the objective function with an adaptive nonlocal spatial regularization term is drawn upon to compensate the drawback of the local spatial information. Meanwhile, bias field information is also embedded into the similarity measure of clustering algorithm. From the comparison between the proposed algorithm and the state-of-the-art methods, our model is more robust to noise in the brain magnetic resonance image, and the bias field is also effectively estimated.
Collapse
|
10
|
Cenek M, Hu M, York G, Dahl S. Survey of Image Processing Techniques for Brain Pathology Diagnosis: Challenges and Opportunities. Front Robot AI 2018; 5:120. [PMID: 33500999 PMCID: PMC7805910 DOI: 10.3389/frobt.2018.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, a number of new products introduced to the global market combine intelligent robotics, artificial intelligence and smart interfaces to provide powerful tools to support professional decision making. However, while brain disease diagnosis from the brain scan images is supported by imaging robotics, the data analysis to form a medical diagnosis is performed solely by highly trained medical professionals. Recent advances in medical imaging techniques, artificial intelligence, machine learning and computer vision present new opportunities to build intelligent decision support tools to aid the diagnostic process, increase the disease detection accuracy, reduce error, automate the monitoring of patient's recovery, and discover new knowledge about the disease cause and its treatment. This article introduces the topic of medical diagnosis of brain diseases from the MRI based images. We describe existing, multi-modal imaging techniques of the brain's soft tissue and describe in detail how are the resulting images are analyzed by a radiologist to form a diagnosis. Several comparisons between the best results of classifying natural scenes and medical image analysis illustrate the challenges of applying existing image processing techniques to the medical image analysis domain. The survey of medical image processing methods also identified several knowledge gaps, the need for automation of image processing analysis, and the identification of the brain structures in the medical images that differentiate healthy tissue from a pathology. This survey is grounded in the cases of brain tumor analysis and the traumatic brain injury diagnoses, as these two case studies illustrate the vastly different approaches needed to define, extract, and synthesize meaningful information from multiple MRI image sets for a diagnosis. Finally, the article summarizes artificial intelligence frameworks that are built as multi-stage, hybrid, hierarchical information processing work-flows and the benefits of applying these models for medical diagnosis to build intelligent physician's aids with knowledge transparency, expert knowledge embedding, and increased analytical quality.
Collapse
Affiliation(s)
- Martin Cenek
- Department of Computer Science, University of Portland, Portland, OR, United States
| | - Masa Hu
- Department of Computer Science, University of Portland, Portland, OR, United States
| | - Gerald York
- TBI Imaging and Research, Alaska Radiology Associates, Anchorage, AK, United States
| | - Spencer Dahl
- Columbia College, Columbia University, New York, NY, United States
| |
Collapse
|
11
|
Supervoxel Segmentation and Bias Correction of MR Image with Intensity Inhomogeneity. Neural Process Lett 2018. [DOI: 10.1007/s11063-017-9704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
van Veenendaal TM, Backes WH, Tse DHY, Scheenen TWJ, Klomp DW, Hofman PAM, Rouhl RPW, Vlooswijk MCG, Aldenkamp AP, Jansen JFA. High field imaging of large-scale neurotransmitter networks: Proof of concept and initial application to epilepsy. Neuroimage Clin 2018; 19:47-55. [PMID: 30035001 PMCID: PMC6051471 DOI: 10.1016/j.nicl.2018.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/22/2018] [Accepted: 04/01/2018] [Indexed: 01/05/2023]
Abstract
The brain can be considered a network, existing of multiple interconnected areas with various functions. MRI provides opportunities to map the large-scale network organization of the brain. We tap into the neurobiochemical dimension of these networks, as neuronal functioning and signal trafficking across distributed brain regions relies on the release and presence of neurotransmitters. Using high-field MR spectroscopic imaging at 7.0 T, we obtained a non-invasive snapshot of the spatial distribution of the neurotransmitters GABA and glutamate, and investigated interregional associations of these neurotransmitters. We demonstrate that interregional correlations of glutamate and GABA concentrations can be conceptualized as networks. Furthermore, patients with epilepsy display an increased number of glutamate and GABA connections and increased average strength of the GABA network. The increased glutamate and GABA connectivity in epilepsy might indicate a disrupted neurotransmitter balance. In addition to epilepsy, the 'neurotransmitter networks' concept might also provide new insights for other neurological diseases.
Collapse
Affiliation(s)
- Tamar M van Veenendaal
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Desmond H Y Tse
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis W Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands
| | - Rob P W Rouhl
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, The Netherlands
| | - Marielle C G Vlooswijk
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, The Netherlands
| | - Albert P Aldenkamp
- School for Mental Health and Neuroscience, Maastricht University, The Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+, Heeze and Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), The Netherlands; School for Mental Health and Neuroscience, Maastricht University, The Netherlands.
| |
Collapse
|
13
|
Meng X, Gu W, Chen Y, Zhang J. Brain MR image segmentation based on an improved active contour model. PLoS One 2017; 12:e0183943. [PMID: 28854235 PMCID: PMC5576762 DOI: 10.1371/journal.pone.0183943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
It is often a difficult task to accurately segment brain magnetic resonance (MR) images with intensity in-homogeneity and noise. This paper introduces a novel level set method for simultaneous brain MR image segmentation and intensity inhomogeneity correction. To reduce the effect of noise, novel anisotropic spatial information, which can preserve more details of edges and corners, is proposed by incorporating the inner relationships among the neighbor pixels. Then the proposed energy function uses the multivariate Student's t-distribution to fit the distribution of the intensities of each tissue. Furthermore, the proposed model utilizes Hidden Markov random fields to model the spatial correlation between neigh-boring pixels/voxels. The means of the multivariate Student's t-distribution can be adaptively estimated by multiplying a bias field to reduce the effect of intensity inhomogeneity. In the end, we reconstructed the energy function to be convex and calculated it by using the Split Bregman method, which allows our framework for random initialization, thereby allowing fully automated applications. Our method can obtain the final result in less than 1 second for 2D image with size 256 × 256 and less than 300 seconds for 3D image with size 256 × 256 × 171. The proposed method was compared to other state-of-the-art segmentation methods using both synthetic and clinical brain MR images and increased the accuracies of the results more than 3%.
Collapse
Affiliation(s)
- Xiangrui Meng
- School of Binjiang, Nanjing University of Information Science and Technology, Nanjing, CHINA
| | - Wenya Gu
- School of Binjiang, Nanjing University of Information Science and Technology, Nanjing, CHINA
| | - Yunjie Chen
- School of math and statistics, Nanjing University of Information Science and Technology, Nanjing, CHINA
- * E-mail:
| | - Jianwei Zhang
- School of math and statistics, Nanjing University of Information Science and Technology, Nanjing, CHINA
| |
Collapse
|
14
|
Al-Taie A, Hahn HK, Linsen L. Combining rules using local statistics and uncertainty estimates for improved ensemble segmentation. PATTERN RECOGNITION AND IMAGE ANALYSIS 2017. [DOI: 10.1134/s105466181703004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Dora L, Agrawal S, Panda R, Abraham A. State-of-the-Art Methods for Brain Tissue Segmentation: A Review. IEEE Rev Biomed Eng 2017. [PMID: 28622675 DOI: 10.1109/rbme.2017.2715350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain tissue segmentation is one of the most sought after research areas in medical image processing. It provides detailed quantitative brain analysis for accurate disease diagnosis, detection, and classification of abnormalities. It plays an essential role in discriminating healthy tissues from lesion tissues. Therefore, accurate disease diagnosis and treatment planning depend merely on the performance of the segmentation method used. In this review, we have studied the recent advances in brain tissue segmentation methods and their state-of-the-art in neuroscience research. The review also highlights the major challenges faced during tissue segmentation of the brain. An effective comparison is made among state-of-the-art brain tissue segmentation methods. Moreover, a study of some of the validation measures to evaluate different segmentation methods is also discussed. The brain tissue segmentation, content in terms of methodologies, and experiments presented in this review are encouraging enough to attract researchers working in this field.
Collapse
|
16
|
Akram F, Garcia MA, Puig D. Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity. PLoS One 2017; 12:e0174813. [PMID: 28376124 PMCID: PMC5380353 DOI: 10.1371/journal.pone.0174813] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/15/2017] [Indexed: 11/19/2022] Open
Abstract
This paper presents a region-based active contour method for the segmentation of intensity inhomogeneous images using an energy functional based on local and global fitted images. A square image fitted model is defined by using both local and global fitted differences. Moreover, local and global signed pressure force functions are introduced in the solution of the energy functional to stabilize the gradient descent flow. In the final gradient descent solution, the local fitted term helps extract regions with intensity inhomogeneity, whereas the global fitted term targets homogeneous regions. A Gaussian kernel is applied to regularize the contour at each step, which not only smoothes it but also avoids the computationally expensive re-initialization. Intensity inhomogeneous images contain undesired smooth intensity variations (bias field) that alter the results of intensity-based segmentation methods. The bias field is approximated with a Gaussian distribution and the bias of intensity inhomogeneous regions is corrected by dividing the original image by the approximated bias field. In this paper, a two-phase model is first derived and then extended to a four-phase model to segment brain magnetic resonance (MR) images into the desired regions of interest. Experimental results with both synthetic and real brain MR images are used for a quantitative and qualitative comparison with state-of-the-art active contour methods to show the advantages of the proposed segmentation technique in practical terms.
Collapse
Affiliation(s)
- Farhan Akram
- Department of Computer Engineering and Mathematics, Rovira i Virgili University, Tarragona, Spain
| | - Miguel Angel Garcia
- Department of Electronic and Communications Technology, Autonomous University of Madrid, Madrid, Spain
| | - Domenec Puig
- Department of Computer Engineering and Mathematics, Rovira i Virgili University, Tarragona, Spain
| |
Collapse
|
17
|
Automated Cardiovascular Segmentation in Patients with Congenital Heart Disease from 3D CMR Scans: Combining Multi-atlases and Level-Sets. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-52280-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
|
19
|
A Modified Brain MR Image Segmentation and Bias Field Estimation Model Based on Local and Global Information. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:9871529. [PMID: 27660649 PMCID: PMC5021895 DOI: 10.1155/2016/9871529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
Abstract
Because of the poor radio frequency coil uniformity and gradient-driven eddy currents, there is much noise and intensity inhomogeneity (bias) in brain magnetic resonance (MR) image, and it severely affects the segmentation accuracy. Better segmentation results are difficult to achieve by traditional methods; therefore, in this paper, a modified brain MR image segmentation and bias field estimation model based on local and global information is proposed. We first construct local constraints including image neighborhood information in Gaussian kernel mapping space, and then the complete regularization is established by introducing nonlocal spatial information of MR image. The weighting between local and global information is automatically adjusted according to image local information. At the same time, bias field information is coupled with the model, and it makes the model reduce noise interference but also can effectively estimate the bias field information. Experimental results demonstrate that the proposed algorithm has strong robustness to noise and bias field is well corrected.
Collapse
|
20
|
MR image segmentation and bias field estimation based on coherent local intensity clustering with total variation regularization. Med Biol Eng Comput 2016; 54:1807-1818. [PMID: 27376641 DOI: 10.1007/s11517-016-1540-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Though numerous segmentation algorithms have been proposed to segment brain tissue from magnetic resonance (MR) images, few of them consider combining the tissue segmentation and bias field correction into a unified framework while simultaneously removing the noise. In this paper, we present a new unified MR image segmentation algorithm whereby tissue segmentation, bias correction and noise reduction are integrated within the same energy model. Our method is presented by a total variation term introduced to the coherent local intensity clustering criterion function. To solve the nonconvex problem with respect to membership functions, we add auxiliary variables in the energy function such as Chambolle's fast dual projection method can be used and the optimal segmentation and bias field estimation can be achieved simultaneously throughout the reciprocal iteration. Experimental results show that the proposed method has a salient advantage over the other three baseline methods on either tissue segmentation or bias correction, and the noise is significantly reduced via its applications on highly noise-corrupted images. Moreover, benefiting from the fast convergence of the proposed solution, our method is less time-consuming and robust to parameter setting.
Collapse
|
21
|
Elazab A, AbdulAzeem YM, Wu S, Hu Q. Robust kernelized local information fuzzy C-means clustering for brain magnetic resonance image segmentation. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:489-507. [PMID: 27257884 DOI: 10.3233/xst-160563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Brain tissue segmentation from magnetic resonance (MR) images is an importance task for clinical use. The segmentation process becomes more challenging in the presence of noise, grayscale inhomogeneity, and other image artifacts. In this paper, we propose a robust kernelized local information fuzzy C-means clustering algorithm (RKLIFCM). It incorporates local information into the segmentation process (both grayscale and spatial) for more homogeneous segmentation. In addition, the Gaussian radial basis kernel function is adopted as a distance metric to replace the standard Euclidean distance. The main advantages of the new algorithm are: efficient utilization of local grayscale and spatial information, robustness to noise, ability to preserve image details, free from any parameter initialization, and with high speed as it runs on image histogram. We compared the proposed algorithm with 7 soft clustering algorithms that run on both image histogram and image pixels to segment brain MR images. Experimental results demonstrate that the proposed RKLIFCM algorithm is able to overcome the influence of noise and achieve higher segmentation accuracy with low computational complexity.
Collapse
Affiliation(s)
- Ahmed Elazab
- Research Laboratory for Medical Imaging and Digital Surgery, Shenzhen Institutes of Advanced Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Department of Computer Science, Faculty of computers and information, Mansoura University, Mansoura City, Egypt
| | | | - Shiqian Wu
- School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan, China
| | - Qingmao Hu
- Research Laboratory for Medical Imaging and Digital Surgery, Shenzhen Institutes of Advanced Technology, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
|
23
|
Segmentation of Brain Tissues from Magnetic Resonance Images Using Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:485495. [PMID: 26793269 PMCID: PMC4697674 DOI: 10.1155/2015/485495] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/23/2015] [Indexed: 12/03/2022]
Abstract
An adaptively regularized kernel-based fuzzy C-means clustering framework is proposed for segmentation of brain magnetic resonance images. The framework can be in the form of three algorithms for the local average grayscale being replaced by the grayscale of the average filter, median filter, and devised weighted images, respectively. The algorithms employ the heterogeneity of grayscales in the neighborhood and exploit this measure for local contextual information and replace the standard Euclidean distance with Gaussian radial basis kernel functions. The main advantages are adaptiveness to local context, enhanced robustness to preserve image details, independence of clustering parameters, and decreased computational costs. The algorithms have been validated against both synthetic and clinical magnetic resonance images with different types and levels of noises and compared with 6 recent soft clustering algorithms. Experimental results show that the proposed algorithms are superior in preserving image details and segmentation accuracy while maintaining a low computational complexity.
Collapse
|
24
|
Gutierrez S, Descamps B, Vanhove C. MRI-Only Based Radiotherapy Treatment Planning for the Rat Brain on a Small Animal Radiation Research Platform (SARRP). PLoS One 2015; 10:e0143821. [PMID: 26633302 PMCID: PMC4669183 DOI: 10.1371/journal.pone.0143821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute to the total dose.
Collapse
Affiliation(s)
- Shandra Gutierrez
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
- * E-mail:
| | - Benedicte Descamps
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| | - Christian Vanhove
- Medical Image and Signal Processing Group, Ghent University-iMinds Medical IT department, Ghent, Belgium
| |
Collapse
|
25
|
Xu Z, Huang TZ, Wang H, Wang C. Variant of the region-scalable fitting energy for image segmentation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2015; 32:463-470. [PMID: 26366658 DOI: 10.1364/josaa.32.000463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents a variant of the level set function based on region-scalable fitting (RSF) model for segmenting a given image into different parts. In consideration of the image local characteristics, the RSF model can efficiently and effectively segment images with intensity inhomogeneity. Instead of utilizing n level set functions to define up to 2n phases in the RSF model, our method presents a piecewise constant level set formulation for image segmentation and each phase is represented by a unique constant value. In addition, our model avoids different segmentation results caused by different initializations. The energy functional of our method is locally differentiable and convex because we do not use the nondifferentiable Heaviside and Delta functions. Comparative experiment results demonstrate that our method is much more computationally efficient. Moreover, our algorithm is robust against destructive noise.
Collapse
|
26
|
Ding H, Johnson T, Lin M, Le HQ, Ducote JL, Su MY, Molloi S. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study. Med Phys 2014; 40:122305. [PMID: 24320536 DOI: 10.1118/1.4831967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Quantification of breast density based on three-dimensional breast MRI may provide useful information for the early detection of breast cancer. However, the field inhomogeneity can severely challenge the computerized image segmentation process. In this work, the effect of the bias field in breast density quantification has been investigated with a postmortem study. METHODS T1-weighted images of 20 pairs of postmortem breasts were acquired on a 1.5 T breast MRI scanner. Two computer-assisted algorithms were used to quantify the volumetric breast density. First, standard fuzzy c-means (FCM) clustering was used on raw images with the bias field present. Then, the coherent local intensity clustering (CLIC) method estimated and corrected the bias field during the iterative tissue segmentation process. Finally, FCM clustering was performed on the bias-field-corrected images produced by CLIC method. The left-right correlation for breasts in the same pair was studied for both segmentation algorithms to evaluate the precision of the tissue classification. Finally, the breast densities measured with the three methods were compared to the gold standard tissue compositions obtained from chemical analysis. The linear correlation coefficient, Pearson's r, was used to evaluate the two image segmentation algorithms and the effect of bias field. RESULTS The CLIC method successfully corrected the intensity inhomogeneity induced by the bias field. In left-right comparisons, the CLIC method significantly improved the slope and the correlation coefficient of the linear fitting for the glandular volume estimation. The left-right breast density correlation was also increased from 0.93 to 0.98. When compared with the percent fibroglandular volume (%FGV) from chemical analysis, results after bias field correction from both the CLIC the FCM algorithms showed improved linear correlation. As a result, the Pearson's r increased from 0.86 to 0.92 with the bias field correction. CONCLUSIONS The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.
Collapse
Affiliation(s)
- Huanjun Ding
- Department of Radiological Sciences, University of California, Irvine, California 92697
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
A new multistage medical segmentation method based on superpixel and fuzzy clustering. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:747549. [PMID: 24734117 PMCID: PMC3966359 DOI: 10.1155/2014/747549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/09/2014] [Indexed: 11/18/2022]
Abstract
The medical image segmentation is the key approach of image processing for brain MRI images. However, due to the visual complex appearance of image structures and the imaging characteristic, it is still challenging to automatically segment brain MRI image. A new multi-stage segmentation method based on superpixel and fuzzy clustering (MSFCM) is proposed to achieve the good brain MRI segmentation results. The MSFCM utilizes the superpixels as the clustering objects instead of pixels, and it can increase the clustering granularity and overcome the influence of noise and bias effectively. In the first stage, the MRI image is parsed into several atomic areas, namely, superpixels, and a further parsing step is adopted for the areas with bigger gray variance over setting threshold. Subsequently, designed fuzzy clustering is carried out to the fuzzy membership of each superpixel, and an iterative broadcast method based on the Butterworth function is used to redefine their classifications. Finally, the segmented image is achieved by merging the superpixels which have the same classification label. The simulated brain database from BrainWeb site is used in the experiments, and the experimental results demonstrate that MSFCM method outperforms the traditional FCM algorithm in terms of segmentation accuracy and stability for MRI image.
Collapse
|
29
|
Joint intensity inhomogeneity correction for whole-body MR data. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2014. [PMID: 24505655 DOI: 10.1007/978-3-642-40811-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Whole-body MR receives increasing interest as potential alternative to many conventional diagnostic methods. Typical whole-body MR scans contain multiple data channels and are acquired in a multistation manner. Quantification of such data typically requires correction of two types of artefacts: different intensity scaling on each acquired image stack, and intensity inhomogeneity (bias) within each stack. In this work, we present an all-in-one method that is able to correct for both mentioned types of acquisition artefacts. The most important properties of our method are: 1) All the processing is performed jointly on all available data channels, which is necessary for preserving the relation between them, and 2) It allows easy incorporation of additional knowledge for estimation of the bias field. Performed validation on two types of whole-body MR data confirmed superior performance of our approach in comparison with state-of-the-art bias removal methods.
Collapse
|
30
|
Wang L, Pan C. Image-guided regularization level set evolution for MR image segmentation and bias field correction. Magn Reson Imaging 2014; 32:71-83. [DOI: 10.1016/j.mri.2013.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 12/01/2022]
|
31
|
Litjens G, Toth R, van de Ven W, Hoeks C, Kerkstra S, van Ginneken B, Vincent G, Guillard G, Birbeck N, Zhang J, Strand R, Malmberg F, Ou Y, Davatzikos C, Kirschner M, Jung F, Yuan J, Qiu W, Gao Q, Edwards PE, Maan B, van der Heijden F, Ghose S, Mitra J, Dowling J, Barratt D, Huisman H, Madabhushi A. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal 2013; 18:359-73. [PMID: 24418598 DOI: 10.1016/j.media.2013.12.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p<0.05) and had an efficient implementation with a run time of 8min and 3s per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/.
Collapse
Affiliation(s)
- Geert Litjens
- Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | - Caroline Hoeks
- Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wu Qiu
- Robarts Research Institute, Canada
| | - Qinquan Gao
- Imperial College London, England, United Kingdom
| | | | | | | | - Soumya Ghose
- Commonwealth Scientific and Industrial Research Organisation, Australia; Université de Bourgogne, France; Universitat de Girona, Spain
| | - Jhimli Mitra
- Commonwealth Scientific and Industrial Research Organisation, Australia; Université de Bourgogne, France; Universitat de Girona, Spain
| | - Jason Dowling
- Commonwealth Scientific and Industrial Research Organisation, Australia
| | - Dean Barratt
- University College London, England, United Kingdom
| | | | | |
Collapse
|
32
|
Zhang H, Ye X, Chen Y. An efficient algorithm for multiphase image segmentation with intensity bias correction. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2013; 22:3842-3851. [PMID: 23674455 DOI: 10.1109/tip.2013.2262291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents a variational model for simultaneous multiphase segmentation and intensity bias estimation for images corrupted by strong noise and intensity inhomogeneity. Since the pixel intensities are not reliable samples for region statistics due to the presence of noise and intensity bias, we use local information based on the joint density within image patches to perform image partition. Hence, the pixel intensity has a multiplicative distribution structure. Then, the maximum-a-posteriori (MAP) principle with those pixel density functions generates the model. To tackle the computational problem of the resultant nonsmooth nonconvex minimization, we relax the constraint on the characteristic functions of partition regions, and apply primal-dual alternating gradient projections to construct a very efficient numerical algorithm. We show that all the variables have closed-form solutions in each iteration, and the computation complexity is very low. In particular, the algorithm involves only regular convolutions and pointwise projections onto the unit ball and canonical simplex. Numerical tests on a variety of images demonstrate that the proposed algorithm is robust, stable, and attains significant improvements on accuracy and efficiency over the state-of-the-arts.
Collapse
Affiliation(s)
- Haili Zhang
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
33
|
Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation. Int J Biomed Imaging 2013; 2013:930301. [PMID: 23997761 PMCID: PMC3749607 DOI: 10.1155/2013/930301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/23/2013] [Accepted: 06/23/2013] [Indexed: 11/17/2022] Open
Abstract
This paper presents a novel fuzzy energy minimization method for simultaneous segmentation and bias field estimation of medical images. We first define an objective function based on a localized fuzzy c-means (FCM) clustering for the image intensities in a neighborhood around each point. Then, this objective function is integrated with respect to the neighborhood center over the entire image domain to formulate a global fuzzy energy, which depends on membership functions, a bias field that accounts for the intensity inhomogeneity, and the constants that approximate the true intensities of the corresponding tissues. Therefore, segmentation and bias field estimation are simultaneously achieved by minimizing the global fuzzy energy. Besides, to reduce the impact of noise, the proposed algorithm incorporates spatial information into the membership function using the spatial function which is the summation of the membership functions in the neighborhood of each pixel under consideration. Experimental results on synthetic and real images are given to demonstrate the desirable performance of the proposed algorithm.
Collapse
|
34
|
Comparative exploration of whole-body MR through locally rigid transforms. Int J Comput Assist Radiol Surg 2013; 8:635-47. [PMID: 23729332 PMCID: PMC3702961 DOI: 10.1007/s11548-013-0820-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE Whole-body MRI is seeing increasing use in the study and diagnosis of disease progression. In this, a central task is the visual assessment of the progressive changes that occur between two whole-body MRI datasets, taken at baseline and follow-up. Current radiological workflow for this consists in manual search of each organ of interest on both scans, usually on multiple data channels, for further visual comparison. Large size of datasets, significant posture differences, and changes in patient anatomy turn manual matching in an extremely labor-intensive task that requires from radiologists high concentration for long period of time. This strongly limits the productivity and increases risk of underdiagnosis. MATERIALS AND METHODS We present a novel approach to the comparative visual analysis of whole-body MRI follow-up data. Our method is based on interactive derivation of locally rigid transforms from a pre-computed whole-body deformable registration. Using this approach, baseline and follow-up slices can be interactively matched with a single mouse click in the anatomical region of interest. In addition to the synchronized side-by-side baseline and matched follow-up slices, we have integrated four techniques to further facilitate the visual comparison of the two datasets: the "deformation sphere", the color fusion view, the magic lens, and a set of uncertainty iso-contours around the current region of interest. RESULTS We have applied our method to the study of cancerous bone lesions over time in patients with Kahler's disease. During these studies, the radiologist carefully visually examines a large number of anatomical sites for changes. Our interactive locally rigid matching approach was found helpful in localization of cancerous lesions and visual assessment of changes between different scans. Furthermore, each of the features integrated in our software was separately evaluated by the experts. CONCLUSION We demonstrated how our method significantly facilitates examination of whole-body MR datasets in follow-up studies by enabling the rapid interactive matching of regions of interest and by the explicit visualization of change.
Collapse
|
35
|
Abstract
In this paper we propose an atlas-aided probabilistic model-based segmentation method for estimating the fibroglandular tissue in breast MRI, where a novel fibroglandular tissue atlas is learned to aid the segmentation. The atlas represents a pixel-wise likelihood of being fibroglandular tissue in the breast, which is derived by combining deformable image warping, using aligned breast contour points as landmarks, with a kernel density estimation technique. A mixture multivariate model is learned to characterize the breast tissue using MR image features, and the segmentation is subsequently based on examining the posterior probability where the learned atlas is incorporated as the prior probability. In our experiments, the algorithm-generated segmentation results of 10 cases are compared to the manual segmentations, verified by an experienced breast imaging radiologist, to assess the accuracy of the algorithm, where the Dice's Similarity Coefficient (DSC) shows a 0.85 agreement. The proposed automated segmentation method could be used to estimate the volumetric amount of fibroglandular tissue in the breast for breast cancer risk estimation.
Collapse
|
36
|
Ji Z, Sun Q, Xia Y, Chen Q, Xia D, Feng D. Generalized rough fuzzy c-means algorithm for brain MR image segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:644-655. [PMID: 22088865 DOI: 10.1016/j.cmpb.2011.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 09/21/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
Fuzzy sets and rough sets have been widely used in many clustering algorithms for medical image segmentation, and have recently been combined together to better deal with the uncertainty implied in observed image data. Despite of their wide spread applications, traditional hybrid approaches are sensitive to the empirical weighting parameters and random initialization, and hence may produce less accurate results. In this paper, a novel hybrid clustering approach, namely the generalized rough fuzzy c-means (GRFCM) algorithm is proposed for brain MR image segmentation. In this algorithm, each cluster is characterized by three automatically determined rough-fuzzy regions, and accordingly the membership of each pixel is estimated with respect to the region it locates. The importance of each region is balanced by a weighting parameter, and the bias field in MR images is modeled by a linear combination of orthogonal polynomials. The weighting parameter estimation and bias field correction have been incorporated into the iterative clustering process. Our algorithm has been compared to the existing rough c-means and hybrid clustering algorithms in both synthetic and clinical brain MR images. Experimental results demonstrate that the proposed algorithm is more robust to the initialization, noise, and bias field, and can produce more accurate and reliable segmentations.
Collapse
Affiliation(s)
- Zexuan Ji
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | | | | | | | | | | |
Collapse
|
37
|
Dzyubachyk O, Lelieveldt BPF, Blaas J, Reijnierse M, Webb A, van der Geest RJ. Automated algorithm for reconstruction of the complete spine from multistation 7T MR data. Magn Reson Med 2012; 69:1777-86. [PMID: 22821374 DOI: 10.1002/mrm.24404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 11/09/2022]
Abstract
Recent technical developments in high-field MRI have enabled high-resolution imaging of the whole spine within clinically acceptable times. However, analysis of such data requires intensity inhomogeneity correction and volume stitching, both of which are typically performed manually. In this work, an automated method for reconstruction of the complete spine from multistation 7T MR data is presented. The method consists of a number of image processing steps, in particular intensity inhomogeneity correction and image registration for recovery of unknown interscan bed translations, which result in high-quality spine volume reconstructions. The registration performance of the developed algorithm was validated on 18 datasets acquired in two or three stations. In all the test cases, our algorithm was able to produce correct reconstruction of the spine volume. The resulting mean registration error (0.53 mm) is found to be lower than the pixel size, demonstrating robustness and accuracy of the proposed method.
Collapse
Affiliation(s)
- Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Ong KH, Ramachandram D, Mandava R, Shuaib IL. Automatic white matter lesion segmentation using an adaptive outlier detection method. Magn Reson Imaging 2012; 30:807-23. [DOI: 10.1016/j.mri.2012.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/29/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022]
|
39
|
Ji Z, Xia Y, Sun Q, Chen Q, Xia D, Feng DD. Fuzzy local Gaussian mixture model for brain MR image segmentation. ACTA ACUST UNITED AC 2012; 16:339-47. [PMID: 22287250 DOI: 10.1109/titb.2012.2185852] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.
Collapse
Affiliation(s)
- Zexuan Ji
- School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China.
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Lin M, Chan S, Chen JH, Chang D, Nie K, Chen ST, Lin CJ, Shih TC, Nalcioglu O, Su MY. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI. Med Phys 2011; 38:5-14. [PMID: 21361169 PMCID: PMC3017578 DOI: 10.1118/1.3519869] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/14/2010] [Accepted: 10/27/2010] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Quantitative breast density is known as a strong risk factor associated with the development of breast cancer. Measurement of breast density based on three-dimensional breast MRI may provide very useful information. One important step for quantitative analysis of breast density on MRI is the correction of field inhomogeneity to allow an accurate segmentation of the fibroglandular tissue (dense tissue). A new bias field correction method by combining the nonparametric nonuniformity normalization (N3) algorithm and fuzzy-C-means (FCM)-based inhomogeneity correction algorithm is developed in this work. METHODS The analysis is performed on non-fat-sat T1-weighted images acquired using a 1.5 T MRI scanner. A total of 60 breasts from 30 healthy volunteers was analyzed. N3 is known as a robust correction method, but it cannot correct a strong bias field on a large area. FCM-based algorithm can correct the bias field on a large area, but it may change the tissue contrast and affect the segmentation quality. The proposed algorithm applies N3 first, followed by FCM, and then the generated bias field is smoothed using Gaussian kernal and B-spline surface fitting to minimize the problem of mistakenly changed tissue contrast. The segmentation results based on the N3+FCM corrected images were compared to the N3 and FCM alone corrected images and another method, coherent local intensity clustering (CLIC), corrected images. The segmentation quality based on different correction methods were evaluated by a radiologist and ranked. RESULTS The authors demonstrated that the iterative N3+FCM correction method brightens the signal intensity of fatty tissues and that separates the histogram peaks between the fibroglandular and fatty tissues to allow an accurate segmentation between them. In the first reading session, the radiologist found (N3+FCM > N3 > FCM) ranking in 17 breasts, (N3+FCM > N3 = FCM) ranking in 7 breasts, (N3+FCM = N3 > FCM) in 32 breasts, (N3+FCM = N3 = FCM) in 2 breasts, and (N3 > N3+FCM > FCM) in 2 breasts. The results of the second reading session were similar. The performance in each pairwise Wilcoxon signed-rank test is significant, showing N3+FCM superior to both N3 and FCM, and N3 superior to FCM. The performance of the new N3+FCM algorithm was comparable to that of CLIC, showing equivalent quality in 57/60 breasts. CONCLUSIONS Choosing an appropriate bias field correction method is a very important preprocessing step to allow an accurate segmentation of fibroglandular tissues based on breast MRI for quantitative measurement of breast density. The proposed algorithm combining N3+FCM and CLIC both yield satisfactory results.
Collapse
Affiliation(s)
- Muqing Lin
- Department of Radiological Sciences, Tu and Yuen Center for Functional Onco-Imaging, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|