1
|
Crouch GM, Han D, Bohn PW. Zero-Mode Waveguide Nanophotonic Structures for Single Molecule Characterization. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:193001. [PMID: 34158676 PMCID: PMC8216246 DOI: 10.1088/1361-6463/aab8be] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (μM - mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer (smFRET), and fluorescence correlation spectroscopy (FCS) for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs (E-ZMW). In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.
Collapse
Affiliation(s)
- Garrison M. Crouch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Donghoon Han
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
- Departmemt of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
2
|
Ramanathan R, Muñoz V. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories. J Phys Chem B 2015; 119:7944-56. [PMID: 25988351 PMCID: PMC4718529 DOI: 10.1021/acs.jpcb.5b03176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/13/2015] [Indexed: 12/11/2022]
Abstract
Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics.
Collapse
Affiliation(s)
- Ravishankar Ramanathan
- Centro
Nacional de Biotecnología, Consejo
Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Victor Muñoz
- Centro
Nacional de Biotecnología, Consejo
Superior de Investigaciones Científicas, 28049 Madrid, Spain
- School
of Engineering, University of California
Merced, Merced, California 95343, United States
| |
Collapse
|
3
|
Rabe M, Tabaei SR, Zetterberg H, Zhdanov VP, Höök F. Hydrolysis of a Lipid Membrane by Single Enzyme Molecules: Accurate Determination of Kinetic Parameters. Angew Chem Int Ed Engl 2014; 54:1022-6. [DOI: 10.1002/anie.201409603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 01/08/2023]
|
4
|
Rabe M, Tabaei SR, Zetterberg H, Zhdanov VP, Höök F. Hydrolysis of a Lipid Membrane by Single Enzyme Molecules: Accurate Determination of Kinetic Parameters. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Wang Q, Goldsmith RH, Jiang Y, Bockenhauer SD, Moerner W. Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc Chem Res 2012; 45:1955-64. [PMID: 22616716 DOI: 10.1021/ar200304t] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single-molecule fluorescence measurements allow researchers to study asynchronous dynamics and expose molecule-to-molecule structural and behavioral diversity, which contributes to the understanding of biological macromolecules. To provide measurements that are most consistent with the native environment of biomolecules, researchers would like to conduct these measurements in the solution phase if possible. However, diffusion typically limits the observation time to approximately 1 ms in many solution-phase single-molecule assays. Although surface immobilization is widely used to address this problem, this process can perturb the system being studied and contribute to the observed heterogeneity. Combining the technical capabilities of high-sensitivity single-molecule fluorescence microscopy, real-time feedback control and electrokinetic flow in a microfluidic chamber, we have developed a device called the anti-Brownian electrokinetic (ABEL) trap to significantly prolong the observation time of single biomolecules in solution. We have applied the ABEL trap method to explore the photodynamics and enzymatic properties of a variety of biomolecules in aqueous solution and present four examples: the photosynthetic antenna allophycocyanin, the chaperonin enzyme TRiC, a G protein-coupled receptor protein, and the blue nitrite reductase redox enzyme. These examples illustrate the breadth and depth of information which we can extract in studies of single biomolecules with the ABEL trap. When confined in the ABEL trap, the photosynthetic antenna protein allophycocyanin exhibits rich dynamics both in its emission brightness and its excited state lifetime. As each molecule discontinuously converts from one emission/lifetime level to another in a primarily correlated way, it undergoes a series of state changes. We studied the ATP binding stoichiometry of the multi-subunit chaperonin enzyme TRiC in the ABEL trap by counting the number of hydrolyzed Cy3-ATP using stepwise photobleaching. Unlike ensemble measurements, the observed ATP number distributions depart from the standard cooperativity models. Single copies of detergent-stabilized G protein-coupled receptor proteins labeled with a reporter fluorophore also show discontinuous changes in emission brightness and lifetime, but the various states visited by the single molecules are broadly distributed. As an agonist binds, the distributions shift slightly toward a more rigid conformation of the protein. By recording the emission of a reporter fluorophore which is quenched by reduction of a nearby type I Cu center, we probed the enzymatic cycle of the redox enzyme nitrate reductase. We determined the rate constants of a model of the underlying kinetics through an analysis of the dwell times of the high/low intensity levels of the fluorophore versus nitrite concentration.
Collapse
Affiliation(s)
- Quan Wang
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - Randall H. Goldsmith
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - Yan Jiang
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - Samuel D. Bockenhauer
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| | - W.E. Moerner
- Department of Chemistry, ‡Department of Electrical Engineering, §Department of Applied Physics, ∥Department of Physics, Stanford University, Stanford, California, United States
| |
Collapse
|
6
|
Fu N, Xiong Y, Squier TC. Synthesis of a targeted biarsenical Cy3-Cy5 affinity probe for super-resolution fluorescence imaging. J Am Chem Soc 2012; 134:18530-3. [PMID: 23116227 DOI: 10.1021/ja308503x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoswitchable fluorescent probes capable of the targeted labeling of tagged proteins are of significant interest due to their ability to enable in situ imaging of protein complexes within native biomolecular assemblies. Here we describe the synthesis of a fluorescent probe (AsCy3Cy5) and demonstrate the targeted labeling and super-resolution imaging of a tagged protein within a supramolecular protein complex.
Collapse
Affiliation(s)
- Na Fu
- Biological Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | | |
Collapse
|