1
|
Álvarez C, Jiménez-Ríos L, Iniesta-Pallarés M, Jurado-Flores A, Molina-Heredia FP, Ng CKY, Mariscal V. Symbiosis between cyanobacteria and plants: from molecular studies to agronomic applications. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6145-6157. [PMID: 37422707 PMCID: PMC10575698 DOI: 10.1093/jxb/erad261] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Nitrogen-fixing cyanobacteria from the order Nostocales are able to establish symbiotic relationships with diverse plant species. They are promiscuous symbionts, as the same strain of cyanobacterium is able to form symbiotic biological nitrogen-fixing relationships with different plants species. This review will focus on the different types of cyanobacterial-plant associations, both endophytic and epiphytic, and provide insights from a structural viewpoint, as well as our current understanding of the mechanisms involved in the symbiotic crosstalk. In all these symbioses, the benefit for the plant is clear; it obtains from the cyanobacterium fixed nitrogen and other bioactive compounds, such as phytohormones, polysaccharides, siderophores, or vitamins, leading to enhanced plant growth and productivity. Additionally, there is increasing use of different cyanobacterial species as bio-inoculants for biological nitrogen fixation to improve soil fertility and crop production, thus providing an eco-friendly, alternative, and sustainable approach to reduce the over-reliance on synthetic chemical fertilizers.
Collapse
Affiliation(s)
- Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Lucía Jiménez-Ríos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Macarena Iniesta-Pallarés
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Fernando P Molina-Heredia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Carl K Y Ng
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Centre for Plant Science, University College Dublin, Belfield, Dublin, Ireland
- UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
2
|
de Vries S, de Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants. QUANTITATIVE PLANT BIOLOGY 2022; 3:e16. [PMID: 37077989 PMCID: PMC10095879 DOI: 10.1017/qpb.2022.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 05/03/2023]
Abstract
Photosynthesis, the ability to fix atmospheric carbon dioxide, was acquired by eukaryotes through symbiosis: the plastids of plants and algae resulted from a cyanobacterial symbiosis that commenced more than 1.5 billion years ago and has chartered a unique evolutionary path. This resulted in the evolutionary origin of plants and algae. Some extant land plants have recruited additional biochemical aid from symbiotic cyanobacteria; these plants associate with filamentous cyanobacteria that fix atmospheric nitrogen. Examples of such interactions can be found in select species from across all major lineages of land plants. The recent rise in genomic and transcriptomic data has provided new insights into the molecular foundation of these interactions. Furthermore, the hornwort Anthoceros has emerged as a model system for the molecular biology of cyanobacteria-plant interactions. Here, we review these developments driven by high-throughput data and pinpoint their power to yield general patterns across these diverse symbioses.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| |
Collapse
|
3
|
Alvarenga DO, Elmdam IV, Timm AB, Rousk K. Chemical Stimulation of Heterocyte Differentiation by the Feather Moss Hylocomium splendens: a Potential New Step in Plant-Cyanobacteria Symbioses. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02075-9. [PMID: 35859069 DOI: 10.1007/s00248-022-02075-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria associated with mosses play a key role in the nitrogen (N) cycle in unpolluted ecosystems. Mosses have been found to release molecules that induce morphophysiological changes in epiphytic cyanobionts. Nevertheless, the extent of moss influence on these microorganisms remains unknown. To evaluate how mosses or their metabolites influence N2 fixation rates by cyanobacteria, we assessed the nitrogenase activity, heterocyte frequency and biomass of a cyanobacterial strain isolated from the feather moss Hylocomium splendens and a non-symbiotic strain when they were either growing by themselves, together with H. splendens or exposed to H. splendens water, acetone, ethanol, or isopropanol extracts. The same cyanobacterial strains were added to another moss (Taxiphyllum barbieri) and a liverwort (Monosolenium tenerum) to assess if these bryophytes affect N2 fixation differently. Although no significant increases in nitrogenase activity by the cyanobacteria were observed when in contact with H. splendens shoots, both the symbiotic and non-symbiotic cyanobacteria increased nitrogenase activity as well as heterocyte frequency significantly upon exposure to H. splendens ethanol extracts. Contact with T. barbieri shoots, on the other hand, did lead to increases in nitrogenase activity, indicating low host-specificity to cyanobacterial activity. These findings suggest that H. splendens produces heterocyte-differentiating factors (HDFs) that are capable of stimulating cyanobacterial N2 fixation regardless of symbiotic competency. Based on previous knowledge about the chemical ecology and dynamics of moss-cyanobacteria interactions, we speculate that HDF expression by the host takes place in a hypothetical new step occurring after plant colonization and the repression of hormogonia.
Collapse
Affiliation(s)
- Danillo Oliveira Alvarenga
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark.
| | - Isabella Vendel Elmdam
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | | | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, 1350, Copenhagen, Denmark
| |
Collapse
|
4
|
Draft genome and description of Waterburya agarophytonicola gen. nov. sp. nov. (Pleurocapsales, Cyanobacteria): a seaweed symbiont. Antonie van Leeuwenhoek 2021; 114:2189-2203. [PMID: 34674103 PMCID: PMC8580901 DOI: 10.1007/s10482-021-01672-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022]
Abstract
This work introduces Waterburya agarophytonicola Bonthond and Shalygin gen. nov., sp. nov, a baeocyte producing cyanobacterium that was isolated from the rhodophyte Agarophyton vermiculophyllum (Ohmi) Gurgel et al., an invasive seaweed that has spread across the northern hemisphere. The new species genome reveals a diverse repertoire of chemotaxis and adhesion related genes, including genes coding for type IV pili assembly proteins and a high number of genes coding for filamentous hemagglutinin family (FHA) proteins. Among a genetic basis for the synthesis of siderophores, carotenoids and numerous vitamins, W. agarophytonicola is potentially capable of producing cobalamin (vitamin B12), for which A. vermiculophyllum is an auxotroph. With a taxonomic description of the genus and species and a draft genome, this study provides as a basis for future research, to uncover the nature of this geographically independent association between seaweed and cyanobiont.
Collapse
|
5
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Stuart RK, Pederson ERA, Weyman PD, Weber PK, Rassmussen U, Dupont CL. Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. THE ISME JOURNAL 2020; 14:3068-3078. [PMID: 32814866 PMCID: PMC7784912 DOI: 10.1038/s41396-020-00738-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/09/2020] [Accepted: 08/05/2020] [Indexed: 01/23/2023]
Abstract
In nitrogen-limited boreal forests, associations between feathermoss and diazotrophic cyanobacteria control nitrogen inputs and thus carbon cycling, but little is known about the molecular regulators required for initiation and maintenance of these associations. Specifically, a benefit to the cyanobacteria is not known, challenging whether the association is a nutritional mutualism. Targeted mutagenesis of the cyanobacterial alkane sulfonate monooxygenase results in an inability to colonize feathermosses by the cyanobacterium Nostoc punctiforme, suggesting a role for organic sulfur in communication or nutrition. Isotope probing paired with high-resolution imaging mass spectrometry (NanoSIMS) demonstrated bidirectional elemental transfer between partners, with carbon and sulfur both being transferred to the cyanobacteria, and nitrogen transferred to the moss. These results support the hypothesis that moss and cyanobacteria enter a mutualistic exosymbiosis with substantial bidirectional material exchange of carbon and nitrogen and potential signaling through sulfur compounds.
Collapse
Affiliation(s)
- Rhona K Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA.
| | - Eric R A Pederson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Philip D Weyman
- J. Craig Venter Institute, La Jolla, CA, 92037, USA
- Zymergen Inc., Emeryville, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Ulla Rassmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
7
|
Chang ACG, Chen T, Li N, Duan J. Perspectives on Endosymbiosis in Coralloid Roots: Association of Cycads and Cyanobacteria. Front Microbiol 2019; 10:1888. [PMID: 31474965 PMCID: PMC6702271 DOI: 10.3389/fmicb.2019.01888] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Past endosymbiotic events allowed photosynthetic organisms to flourish and evolve in terrestrial areas. The precursor of chloroplasts was an ancient photosynthetic cyanobacterium. Presently, cyanobacteria are still capable of establishing successful symbioses in a wide range of hosts. One particular host plant among the gymnosperms is cycads (Order Cycadales) in which a special type of root system, referred to as coralloid roots, develops to house symbiotic cyanobacteria. A number of studies have explained coralloid root formation and cyanobiont invasion but the questions on mechanisms of this host-microbe association remains vague. Most researches focus on diversity of symbionts in coralloid roots but equally important is to explore the underlying mechanisms of cycads-Nostoc symbiosis as well. Besides providing an overview of relevant areas presently known about this association and citing putative genes involved in cycad-cyanobacteria symbioses, this paper aims to identify the limitations that hamper attempts to get to the root of the matter and suggests future research directions that may prove useful.
Collapse
Affiliation(s)
- Aimee Caye G. Chang
- University of Chinese Academy of Sciences, Beijing, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Duan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Suhaimi NSM, Goh SY, Ajam N, Othman RY, Chan KG, Thong KL. Diversity of microbiota associated with symptomatic and non-symptomatic bacterial wilt-diseased banana plants determined using 16S rRNA metagenome sequencing. World J Microbiol Biotechnol 2017; 33:168. [PMID: 28828756 DOI: 10.1007/s11274-017-2336-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Banana is one of the most important fruits cultivated in Malaysia, and it provides many health benefits. However, bacterial wilt disease, which attacks bananas, inflicts major losses on the banana industry in Malaysia. To understand the complex interactions of the microbiota of bacterial wilt-diseased banana plants, we first determined the bacterial communities residing in the pseudostems of infected (symptomatic) and diseased-free (non-symptomatic) banana plants. We characterized the associated microorganisms using the targeted 16S rRNA metagenomics sequencing on the Illumina MiSeq platform. Taxonomic classifications revealed 17 and nine known bacterial phyla in the tissues of non-symptomatic and symptomatic plants, respectively. Cyanobacteria and Proteobacteria (accounted for more than 99% of the 16S rRNA gene fragments) were the two most abundant phyla in both plants. The five major genera found in both plant samples were Ralstonia, Sphingomonas, Methylobacterium, Flavobacterium, and Pseudomonas. Ralstonia was more abundant in symptomatic plant (59% out of the entire genera) as compared to those in the non-symptomatic plant (only 36%). Our data revealed that 102 bacterial genera were only assigned to the non-symptomatic plant. Overall, this study indicated that more diverse and abundant microbiota were associated with the non-symptomatic bacterial wilt-diseased banana plant as compared to the symptomatic plant. The higher diversity of endophytic microbiota in the non-symptomatic banana plant could be an indication of pathogen suppression which delayed or prevented the disease expression. This comparative study of the microbiota in the two plant conditions might provide caveats for potential biological control strategies.
Collapse
Affiliation(s)
| | - Share-Yuan Goh
- Genetics and Molecular Biology Unit, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noni Ajam
- Microbiology Unit, Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rofina Yasmin Othman
- Microbiology Unit, Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Genetics and Molecular Biology Unit, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Microbiology Unit, Institute of Biological Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis. ISME JOURNAL 2017; 11:2821-2833. [PMID: 28800136 PMCID: PMC5702739 DOI: 10.1038/ismej.2017.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022]
Abstract
Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss–cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria–plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant–cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria–feathermoss symbiosis.
Collapse
|
10
|
Feng J, Zhang X, Wang G, Xie S. Morphology and phylogenetic relationships of the chrysophytes associated with two mosses. Symbiosis 2016. [DOI: 10.1007/s13199-016-0392-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. FRONTIERS IN PLANT SCIENCE 2015; 6:46. [PMID: 25699072 PMCID: PMC4318279 DOI: 10.3389/fpls.2015.00046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/16/2015] [Indexed: 05/18/2023]
Abstract
Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg(-1)ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity.
Collapse
Affiliation(s)
- Anwar Hussain
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Syed T. Shah
- Nuclear Institute for Food and Agriculture, Tarnab PeshawarPakistan
| | - Hazir Rahman
- Department of Microbiology, Kohat University of Science and Technology, KohatPakistan
| | - Muhammad Irshad
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Amjad Iqbal
- Department of Food Science, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| |
Collapse
|
12
|
Zhang XJ, Feng J, Wang GH, Xie SL. A morphological and phylogenetic study of a filamentous cyanobacterium, Microcoleus vaginatus, associated with the moss Mnium cuspidatum. Symbiosis 2014. [DOI: 10.1007/s13199-014-0301-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Singh S. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 2014; 117:1221-44. [DOI: 10.1111/jam.12612] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- S. Singh
- Center for Biotechnology; Department of Biological Sciences; Birla Institute of Technology and Science; Pilani India
| |
Collapse
|
14
|
Regulation of nitrogenase gene expression by transcript stability in the cyanobacterium Anabaena variabilis. J Bacteriol 2014; 196:3609-21. [PMID: 25092030 DOI: 10.1128/jb.02045-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogenase gene cluster in cyanobacteria has been thought to comprise multiple operons; however, in Anabaena variabilis, the promoter for the first gene in the cluster, nifB1, appeared to be the primary promoter for the entire nif cluster. The structural genes nifHDK1 were the most abundant transcripts; however, their abundance was not controlled by an independent nifH1 promoter, but rather, by RNA processing, which produced a very stable nifH1 transcript and a moderately stable nifD1 transcript. There was also no separate promoter for nifEN1. In addition to the nifB1 promoter, there were weak promoters inside the nifU1 gene and inside the nifE1 gene, and both promoters were heterocyst specific. In an xisA mutant, which effectively separated promoters upstream of an 11-kb excision element in nifD1 from the downstream genes, the internal nifE1 promoter was functional. Transcription of the nif1 genes downstream of the 11-kb element, including the most distant genes, hesAB1 and fdxH1, was reduced in the xisA mutant, indicating that the nifB1 promoter contributed to their expression. However, with the exception of nifK1 and nifE1, which had no expression, the downstream genes showed low to moderate levels of transcription in the xisA mutant. The hesA1 gene also had a promoter, but the fdxH gene had a processing site just upstream of the gene. The processing of transcripts at sites upstream of nifH1 and fdxH1 correlated with increased stability of these transcripts, resulting in greater amounts than transcripts that were not close to processing sites.
Collapse
|
15
|
Bay G, Nahar N, Oubre M, Whitehouse MJ, Wardle DA, Zackrisson O, Nilsson MC, Rasmussen U. Boreal feather mosses secrete chemical signals to gain nitrogen. THE NEW PHYTOLOGIST 2013; 200:54-60. [PMID: 23795916 DOI: 10.1111/nph.12403] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/06/2013] [Indexed: 05/13/2023]
Abstract
The mechanistic basis of feather moss-cyanobacteria associations, a main driver of nitrogen (N) input into boreal forests, remains unknown. Here, we studied colonization by Nostoc sp. on two feather mosses that form these associations (Pleurozium schreberi and Hylocomium splendens) and two acrocarpous mosses that do not (Dicranum polysetum and Polytrichum commune). We also determined how N availability and moss reproductive stage affects colonization, and measured N transfer from cyanobacteria to mosses. The ability of mosses to induce differentiation of cyanobacterial hormogonia, and of hormogonia to then colonize mosses and re-establish a functional symbiosis was determined through microcosm experiments, microscopy and acetylene reduction assays. Nitrogen transfer between cyanobacteria and Pleurozium schreberi was monitored by secondary ion mass spectrometry (SIMS). All mosses induced hormogonia differentiation but only feather mosses were subsequently colonized. Colonization on Pleurozium schreberi was enhanced during the moss reproductive phase but impaired by elevated N. Transfer of N from cyanobacteria to their host moss was observed. Our results reveal that feather mosses likely secrete species-specific chemo-attractants when N-limited, which guide cyanobacteria towards them and from which they gain N. We conclude that this signalling is regulated by N demands of mosses, and serves as a control of N input into boreal forests.
Collapse
Affiliation(s)
- Guillaume Bay
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Nurun Nahar
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Matthieu Oubre
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Martin J Whitehouse
- Department of Geosciences, Swedish Museum of Natural History, Box 50007, Stockholm, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Olle Zackrisson
- The Institute for Subarctic Landscape Research, SE-930 90, Arjeplog, Sweden
| | - Marie-Charlotte Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
16
|
Hussain A, Hamayun M, Shah ST. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Curr Microbiol 2013; 67:624-30. [PMID: 23794014 DOI: 10.1007/s00284-013-0408-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/19/2013] [Indexed: 01/07/2023]
Abstract
Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P < 0.05) as a result of ipt inactivation as evident by low chlorophyll a concentration in the roots. In contrast to the mutant strain, wild type strain showed good association with the roots and enhanced several growth parameters, such as fresh weight, dry weight, shoot length, and root length of the crop plants. The study clearly demonstrated that Ck is a tool of endophytic Nostoc to colonize plant root and promote its growth.
Collapse
Affiliation(s)
- Anwar Hussain
- Department of Botany, University College of Science, Abdul Wali Khan University Mardan, Shankar Campus, Mardan, Pakistan,
| | | | | |
Collapse
|
17
|
Jackson O, Taylor O, Adams DG, Knox JP. Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1338-49. [PMID: 22670754 DOI: 10.1094/mpmi-04-12-0095-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP.
Collapse
|