1
|
Palmeira-Pinto L, Emerenciano AK, Bergami E, Joviano WR, Rosa AR, Neves CL, Corsi I, Marques-Santos LF, Silva JRMC. Alterations induced by titanium dioxide nanoparticles (nano-TiO 2) in fertilization and embryonic and larval development of the tropical sea urchin Lytechinus variegatus. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106016. [PMID: 37167835 DOI: 10.1016/j.marenvres.2023.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The release of nanomaterials into the environment is the cause of an emerging concern. Titanium dioxide nanoparticles (nano-TiO2) among the most produced nanomaterials, has been documented in marine coastal areas posing a threat on marine biota. Sea urchin embryos are recognized as suitable bioindicators in ecological risk assessment and recently for nanomaterials. This study investigated the impact of nano-TiO2 on fertilization, embryonic and larval development of the tropical sea urchin Lytechinus variegatus in a range of concentrations (0.005-5 μg/mL) which includes environmentally relevant ones. The behavior of nano-TiO2 in tropical natural seawater was determined by dynamic light scattering (DLS) and toxicity was evaluated through fertilization and embryotoxicity tests, and morphological/morphometric analyses of sea urchin's larvae. Limited toxicity was recorded for nano-TiO2 in tropical sea urchin embryos and larvae, except for effects at the gastrula stage at 0.005 μg/mL. Large agglomerates of nano-TiO2 (5 μg/mL) were observed adhering onto sea urchin larvae thus probably preventing nanoparticles uptake at the highest concentrations (>0.005 μg/mL). Environmental levels of nano-TiO2 are able to cause toxicity on tropical sea urchin L. variegatus embryos with potential consequences on populations and their ecological role in tropical coastal areas.
Collapse
Affiliation(s)
- L Palmeira-Pinto
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil.
| | - A K Emerenciano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| | - E Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy; Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 213/D, 41125, Modena, Italy
| | - W R Joviano
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| | - A R Rosa
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| | - C L Neves
- Pathophysiology Laboratory, Butantan Institute, CEP, 05503-900, São Paulo, SP, Brazil
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - L F Marques-Santos
- Department of Molecular Biology, Center for Exact and Nature Sciences, Federal University of Paraiba, Cidade Universitária s/n, Castelo Branco, CEP, 58051-900, João Pessoa, PB, Brazil
| | - J R M C Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524, CEP, 05509-900, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Di Giglio S, Spatafora D, Milazzo M, M'Zoudi S, Zito F, Dubois P, Costa C. Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137443. [PMID: 32325563 DOI: 10.1016/j.scitotenv.2020.137443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Sarah Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Davide Spatafora
- Department of Earth and Marine Science (DiSTeM), Università degli studi di Palermo, 90146 Palermo, Italy
| | - Marco Milazzo
- Department of Earth and Marine Science (DiSTeM), Università degli studi di Palermo, 90146 Palermo, Italy
| | - Saloua M'Zoudi
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Francesca Zito
- Consiglio Nazionale Delle Ricerche, Istituto per la Ricerca e per l'Innovazione Biomedica (IRIB), Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, 1050 Bruxelles, Belgium.
| | - Caterina Costa
- Consiglio Nazionale Delle Ricerche, Istituto per la Ricerca e per l'Innovazione Biomedica (IRIB), Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
3
|
Hamil S, Baha M, Abdi A, Alili M, Bilican BK, Yilmaz BA, Cakmak YS, Bilican I, Kaya M. Use of sea urchin spines with chitosan gel for biodegradable film production. Int J Biol Macromol 2020; 152:102-108. [DOI: 10.1016/j.ijbiomac.2020.02.263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 11/28/2022]
|
4
|
Chiarelli R, Martino C, Roccheri MC. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019; 24:675-687. [PMID: 31165437 PMCID: PMC6629738 DOI: 10.1007/s12192-019-01010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities. Cadmium does not have any biological role and, since it cannot be degraded by living organisms, it is irreversibly accumulated into cells, interacting with cellular components and molecular targets. Cadmium is one of the most studied heavy metal inductors of stress and a potent modulator of several processes such as apoptosis, autophagy, reactive oxygen species, protein kinase and phosphatase, mitochondrial function, metallothioneins, and heat-shock proteins. Sea urchins (adults, gametes, embryos, and larvae) offer an optimal opportunity to investigate the possible adaptive response of cells exposed to cadmium, since these cells are known to accumulate contaminants. In this review, we will examine several responses to stress induced by cadmium in different sea urchin species, with a focus on Paracentrotus lividus embryos. The sea urchin embryo represents a suitable system, as it is not subjected to legislation on animal welfare and can be easily used for toxicological studies and as a bioindicator of environmental pollution. Recently, it has been included into the guidelines for the use and interpretation of assays to monitor autophagy.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
5
|
Martino C, Chiarelli R, Roccheri MC, Matranga V, Byrne M. Effects of magnesium deprivation on development and biomineralization in the sea urchin Arbacia lixula. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1611670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy
| | - Roberto Chiarelli
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Dorey N, Martin S, Oberhänsli F, Teyssié JL, Jeffree R, Lacoue-Labarthe T. Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 190-191:20-30. [PMID: 29738950 DOI: 10.1016/j.jenvrad.2018.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline. The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to -1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide (241Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development. Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals.
Collapse
Affiliation(s)
- Narimane Dorey
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, Institut du Littoral et Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Sophie Martin
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Laboratoire Adaptation et Diversité en Milieu Marin, Sorbonne Universités, UPMC Univ Paris 06, Station Biologique, Place Georges Teissier, 29688 Roscoff Cedex, France; CNRS, UMR7144, Station Biologique, Place Georges Teissier, 29688 Roscoff Cedex, France
| | - François Oberhänsli
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco
| | - Jean-Louis Teyssié
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco
| | - Ross Jeffree
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Life Sciences, C3, Faculty of Science, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Thomas Lacoue-Labarthe
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, Institut du Littoral et Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
7
|
Martino C, Costa C, Roccheri MC, Koop D, Scudiero R, Byrne M. Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:57-66. [PMID: 29156215 DOI: 10.1016/j.aquatox.2017.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24h post-fertilization, and a strong inhibition of skeleton growth at 48h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in Ca. To investigate the impact of Gd on the expression of genes involved in the regulation of skeletogenesis, we performed comparative RT-PCR analysis and found a misregulation of several genes involved in the skeletogenic and left-right axis specification gene regulatory networks. Species-specific differences in the biomineralization response were evident, likely due to differences in the skeletal framework of the larvae and the amount of biomineral produced. Our results highlight the hazard of Gd for marine organisms.
Collapse
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Demian Koop
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| | - Rosaria Scudiero
- Dipartimento di Biologia, Università di Napoli Federico II, via Mezzocannone 8, 80134, Napoli, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| |
Collapse
|
8
|
Martino C, Chiarelli R, Bosco L, Roccheri MC. Induction of skeletal abnormalities and autophagy in Paracentrotus lividus sea urchin embryos exposed to gadolinium. MARINE ENVIRONMENTAL RESEARCH 2017; 130:12-20. [PMID: 28712826 DOI: 10.1016/j.marenvres.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/21/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Gadolinium (Gd) concentration is constantly increasing in the aquatic environment, becoming an emergent environmental pollutant. We investigated the effects of Gd on Paracentrotus lividus sea urchin embryos, focusing on skeletogenesis and autophagy. We observed a delay of biomineral deposition at 24 hours post fertilization (hpf), and a strong impairment of skeleton growth at 48 hpf, frequently displayed by an asymmetrical pattern. Skeleton growth was found partially resumed in recovery experiments. The mesodermal cells designated to biomineralization were found correctly migrated at 24 hpf, but not at 48 hpf. Western blot analysis showed an increase of the LC3-II autophagic marker at 24 and 48 hpf. Confocal microscopy studies confirmed the increased number of autophagolysosomes and autophagosomes. Results show the hazard of Gd in the marine environment, indicating that Gd is able to affect different aspects of sea urchin development: morphogenesis, biomineralization, and stress response through autophagy.
Collapse
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale Delle Scienze, Ed. 16, 90128 Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Roberto Chiarelli
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale Delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Liana Bosco
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale Delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale Delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
9
|
Bonaventura R, Matranga V. Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation. MARINE ENVIRONMENTAL RESEARCH 2017; 128:25-35. [PMID: 27252015 DOI: 10.1016/j.marenvres.2016.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 05/20/2023]
Abstract
The sea urchin embryo is a well-recognized developmental biology model and its use in toxicological studies has been widely appreciated. Many studies have focused on the evaluation of the effects of chemical stressors and their mixture in marine ecosystems using sea urchin embryos. These are well equipped with defense genes used to cope with chemical stressors. Recently, ultraviolet radiation (UVR), particularly UVB (280-315 nm), received more attention as a physical stressor. Mainly in the Polar Regions, but also at temperate latitudes, the penetration of UVB into the oceans increases as a consequence of the reduction of the Earth's ozone layer. In general, UVR induces oxidative stress in marine organisms affecting molecular targets such as DNA, proteins, and lipids. Depending on the UVR dose, developing sea urchin embryos show morphological perturbations affecting mainly the skeleton formation and patterning. Nevertheless, embryos are able to protect themselves against excessive UVR, using mechanisms acting at different levels: transcriptional, translational and post-translational. In this review, we recommend the sea urchin embryo as a suitable model for testing physical stressors such as UVR and summarize the mechanisms adopted to deal with UVR. Moreover, we review UV-induced apoptotic events and the combined effects of UVR and other stressors.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
10
|
Martino C, Bonaventura R, Byrne M, Roccheri M, Matranga V. Effects of exposure to gadolinium on the development of geographically and phylogenetically distant sea urchins species. MARINE ENVIRONMENTAL RESEARCH 2017; 128:98-106. [PMID: 27296320 DOI: 10.1016/j.marenvres.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Gadolinium (Gd), a metal of the lanthanide series used as contrast agent for magnetic resonance imaging, is released into the aquatic environment. We investigated the effects of Gd on the development of four sea urchin species: two from Europe, Paracentrotus lividus and Arbacia lixula, and two from Australia, Heliocidaris tuberculata and Centrostephanus rodgersii. Exposure to Gd from fertilization resulted in inhibition or alteration of skeleton growth in the plutei. The similar morphological response to Gd in the four species indicates a similar mechanism underlying abnormal skeletogenesis. Sensitivity to Gd greatly varied, with the EC50 ranging from 56 nM to 132 μM across the four species. These different sensitivities highlight the importance of testing toxicity in several species for risk assessment. The strong negative effects of Gd on calcification in plutei, together with the plethora of marine species that have calcifying larvae, indicates that Gd pollution is urgent issue that needs to be addressed.
Collapse
Affiliation(s)
- Chiara Martino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy; Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy.
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia.
| | - Maria Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
11
|
Zito F, Lampiasi N, Kireev I, Russo R. United we stand: Adhesion and molecular mechanisms driving cell fusion across species. Eur J Cell Biol 2016; 95:552-562. [DOI: 10.1016/j.ejcb.2016.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 01/14/2023] Open
|
12
|
Karakostis K, Costa C, Zito F, Brümmer F, Matranga V. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:384-395. [PMID: 27230618 DOI: 10.1007/s10126-016-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- INSERM - UMR 1162, Institute de Génétique Moléculaire, Hôpital St. Louis, 27 rue Juliette Dodu, 75010, Paris, France
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy.
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| |
Collapse
|
13
|
Marine Invertebrates of Boka Kotorska Bay Unique Sources for Bioinspired Materials Science. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2016. [DOI: 10.1007/698_2016_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Morroni L, Pinsino A, Pellegrini D, Regoli F, Matranga V. Development of a new integrative toxicity index based on an improvement of the sea urchin embryo toxicity test. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 123:2-7. [PMID: 26477574 DOI: 10.1016/j.ecoenv.2015.09.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
The sea urchin embryo toxicity test is classically used to assess the noxious effects of contaminated marine waters and sediments. In Italian guidelines on quality of dredged sediments, the standard toxicity criteria used for this assay are based on a single endpoint at 48 hours of development, corresponding to the pluteus stage. Different typologies of abnormalities, including those which occur at earlier stages, are not categorized, thus preventing the evaluation of the actual teratogenic hazards. A new integrative toxicity index has been developed in this study based on the analysis of two developmental stages, at 24 and 48h post-fertilization, and the differentiation between development delays and germ layers impairments: the new toxicity index is calculated by integrating the frequency of abnormal embryos with the severity of such abnormalities. When tested on dredged sediments, the evaluation of increasing levels of toxicity affecting embryonic outcomes enhanced the capability to discriminate different samples, appearing particularly relevant to validate the sea urchin embryo toxicity assay, and supporting its utility in practical applications such as the sediments classification in harbor areas.
Collapse
Affiliation(s)
- L Morroni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; Istituto Superiore per la Protezione e la Ricerca Ambientale, Livorno, Italy
| | - A Pinsino
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - D Pellegrini
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Livorno, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - V Matranga
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
15
|
Macedo D, Mendonça Júnior FJB, de Moura RO, Marques-Santos LF. Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development. Toxicol In Vitro 2015; 31:72-85. [PMID: 26616279 DOI: 10.1016/j.tiv.2015.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/09/2015] [Accepted: 11/21/2015] [Indexed: 02/03/2023]
Abstract
Chemotherapy is the main cancer treatment and consists of drug administration that interferes with several metabolic pathways, leading to tumor cell death. Antimitotic drugs have a relevant role in chemotherapy. This study aimed to investigate the effect of a pyrimidinone derivative (6-(p-Anisyl)-2-(p-chlorophenyl)-4-oxo-3,4-dihydropyrimidine-5-carbonitrile, Py-09) on sea urchin embryonic development model. The effects of the compound were analyzed on fertilization, embryonic development, mitochondrial membrane potential (ΔΨm), production of reactive oxygen species (ROS) and ABC transporter activity. Py-09 inhibited the fertilization and the embryonic development in a time and dose-dependent pattern, with the maximum effect at 50 μM (EC50=12.5 μM). Py-09 induced the loss of ΔΨm without altering ROS intracellular levels. Morphological changes were observed in the pattern of embryo cleavage (unequal cleavage) and at larval stages (fissures of spicules and pigment cell leakage). We also demonstrated that Py-09 is not an ABC transporter substrate and the derivative does not circumvent the MXR phenomenon. Our study reports--for the first time--the antimitotic activity of Py-09 and stimulates new research on the potential of Py-09 as a pharmacological tool for in vitro studies, as well as its use as a new anticancer drug.
Collapse
Affiliation(s)
- Dalliane Macedo
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento (LABID), Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
16
|
Bonaventura R, Russo R, Zito F, Matranga V. Combined Effects of Cadmium and UVB Radiation on Sea Urchin Embryos: Skeleton Impairment Parallels p38 MAPK Activation and Stress Genes Overexpression. Chem Res Toxicol 2015; 28:1060-9. [DOI: 10.1021/acs.chemrestox.5b00080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto
di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto
di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto
di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto
di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
17
|
Echinoderms: Hierarchically Organized Light Weight Skeletons. BIOLOGICALLY-INSPIRED SYSTEMS 2015. [DOI: 10.1007/978-94-017-9398-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Russo R, Pinsino A, Costa C, Bonaventura R, Matranga V, Zito F. The newly characterizedPl-jun is specifically expressed in skeletogenic cells of theParacentrotus lividussea urchin embryo. FEBS J 2014; 281:3828-43. [DOI: 10.1111/febs.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Roberta Russo
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Annalisa Pinsino
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Rosa Bonaventura
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| |
Collapse
|
19
|
Dubois P. The skeleton of postmetamorphic echinoderms in a changing world. THE BIOLOGICAL BULLETIN 2014; 226:223-36. [PMID: 25070867 DOI: 10.1086/bblv226n3p223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Available evidence on the impact of acidification and its interaction with warming on the skeleton of postmetamorphic (juvenile and adult) echinoderms is reviewed. Data are available on sea urchins, starfish, and brittle stars in 33 studies. Skeleton growth of juveniles of all sea urchin species studied so far is affected from pH 7.8 to 7.6 in seawater, values that are expected to be reached during the 21st century. Growth in adult sea urchins (six species studied) is apparently only marginally affected at seawater pH relevant to this century. The interacting effect of temperature differed according to studies. Juvenile starfish as well as adults seem to be either not impacted or even boosted by acidification. Brittle stars show moderate effects at pH below or equal to 7.4. Dissolution of the body wall skeleton is unlikely to be a major threat to sea urchins. Spines, however, due to their exposed position, are more prone to this threat, but their regeneration abilities can probably ensure their maintenance, although this could have an energetic cost and induce changes in resource allocation. No information is available on skeleton dissolution in starfish, and the situation in brittle stars needs further assessment. Very preliminary evidence indicates that mechanical properties in sea urchins could be affected. So, although the impact of ocean acidification on the skeleton of echinoderms has been considered as a major threat from the first studies, we need a better understanding of the induced changes, in particular the functional consequences of growth modifications and dissolution related to mechanical properties. It is suggested to focus studies on these aspects.
Collapse
Affiliation(s)
- Philippe Dubois
- Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, av F.D. Roosevelt, 50, B-1050 Bruxelles, Belgium
| |
Collapse
|
20
|
Knapp RT, Wu CH, Mobilia KC, Joester D. Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro. J Am Chem Soc 2012; 134:17908-11. [PMID: 23066927 DOI: 10.1021/ja309024b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomineralization in sea urchin embryos is a crystal growth process that results in oriented single-crystalline spicules with a complex branching shape and smoothly curving surfaces. Uniquely, the primary mesenchyme cells (PMCs) that construct the endoskeleton can be cultured in vitro. However, in the absence of morphogenetic cues secreted by other cells in the embryo, spicules deposited in PMC culture lack the complex branching behavior observed in the embryo. Herein we demonstrate that recombinant sea urchin vascular endothelial growth factor (rVEGF), a signaling molecule that interacts with a cell-surface receptor, induces spiculogenesis and controls the spicule shape in PMC culture. Depending on the rVEGF concentration, PMCs deposit linear, "h"- and "H"-shaped, or triradiate spicules. Remarkably, the change from linear to triradiate occurs with a switch from bidirectional crystal growth parallel to the calcite c axis to growth along the three a axes. This finding has implications for our understanding of how cells integrate morphogenesis on the multi-micrometer scale with control over lattice orientation on the atomic scale. The PMC model system is uniquely suited to investigate this mechanism and develop biotechnological approaches to single-crystal growth.
Collapse
Affiliation(s)
- Regina T Knapp
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
21
|
Costa C, Karakostis K, Zito F, Matranga V. Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos. Dev Genes Evol 2012; 222:245-51. [PMID: 22565340 DOI: 10.1007/s00427-012-0405-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
P16 and P19 are two small acidic proteins involved in the formation of the biomineralized skeleton of sea urchin embryos and adults. Here, we describe the cloning and the embryonic temporal and spatial expression profiles of p16 and p19 mRNAs, identified for the first time in Paracentrotus lividus. Phylogenetic analysis showed a high degree of similarity of the deduced Pl-P16 and Pl-P19 sequences with the Lytechinus variegatus and Strongylocentrotus purpuratus orthologs. While only a reduced similarity with other phyla, including mammals, was detected, their implication in biomineralized tissues calls for their conservation in evolution. By comparative quantitative PCR and in situ hybridization, we found that Pl-p16 and Pl-p19 expression was restricted to skeletogenic cells throughout embryogenesis, with transcript levels peaking at the late gastrula stage. Dissimilar Pl-p16 and Pl-p19 spatial expression within the primary mesenchyme cell syncytium at the gastrula and pluteus stages suggests the occurrence of a different regulation of gene transcription.
Collapse
Affiliation(s)
- Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | | | | | | |
Collapse
|