1
|
Zhang MX, You EM, Zheng P, Ding SY, Tian ZQ, Moskovits M. Accurately Predicting the Radiation Enhancement Factor in Plasmonic Optical Antenna Emitters. J Phys Chem Lett 2020; 11:1947-1953. [PMID: 32079400 DOI: 10.1021/acs.jpclett.0c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic optical antennas (POAs), often constructed from gold or silver nanostructures, can enhance the radiation efficiency of emitters coupled to POAs and are applied in surface-enhanced Raman spectroscopy (SERS) and light-emitting devices. Over the past four decades, radiation enhancement factors (REFs) of POA-emitter systems were considered to be difficult to calculate directly and have been predicted indirectly and approximately, assuming POAs are illuminated by electromagnetic plane waves without emitters. The validity of this approximation remains a significant open problem in SERS theory. Herein, we develop a method based on the rigorous optical reciprocity theorem for accurately calculating the REFs of emitters in nanoparticle-substrate nanogaps for single-molecule SERS and scanning probe-substrate nanogaps for tip-enhanced Raman spectroscopy. We show that the validity of the plane wave approximation breaks down if high-order plasmonic modes are excited. The as-developed method paves the way toward designing high-REF POA nanostructures for luminescence-related devices.
Collapse
Affiliation(s)
- Mao-Xin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng Zheng
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Martin Moskovits
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Mueller NS, Reich S. Modeling Surface-Enhanced Spectroscopy With Perturbation Theory. Front Chem 2019; 7:470. [PMID: 31380339 PMCID: PMC6660251 DOI: 10.3389/fchem.2019.00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Theoretical modeling of surface-enhanced Raman scattering (SERS) is of central importance for unraveling the interplay of underlying processes and a predictive design of SERS substrates. In this work we model the plasmonic enhancement mechanism of SERS with perturbation theory. We consider the excitation of plasmonic modes as an integral part of the Raman process and model SERS as higher-order Raman scattering. Additional resonances appear in the Raman cross section which correspond to the excitation of plasmons at the wavelengths of the incident and the Raman-scattered light. The analytic expression for the Raman cross section can be used to explain the outcome of resonance Raman measurements on SERS analytes as we demonstrate by comparison to experimental data. We also implement the theory to calculate the optical absorption cross section of plasmonic nanoparticles. From a comparison to experimental cross sections, we show that the coupling matrix elements need to be renormalized by a factor that accounts for the depolarization by the bound electrons and interband transitions in order to obtain the correct magnitude. With model calculations we demonstrate that interference of different scattering channels is key to understand the excitation energy dependence of the SERS enhancement for enhancement factors below 103.
Collapse
|