1
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Knot strength and antimicrobial evaluations of partially absorbable suture. Prog Biomater 2022; 12:51-59. [PMID: 36461948 PMCID: PMC9958218 DOI: 10.1007/s40204-022-00212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Partially absorbable suture is useful for orthopedic repair as it possesses the capacity to promote a balance between strength, degradation rate and minimal inflammation. Still, the availability of partially absorbable suture is scarce. So far, no study has examined the mechanical strength and anti-microbial properties of partially absorbable monofilament suture made of low-density polyethylene (LDPE)/polylactide (PLA)/chitosan (CHS); hence, the reason for this study with a view to improve knot strength, antimicrobial property and degradation rate. In this study, monofilament suture was extruded using different weight fractions of LDPE, PLA and CHS. In vitro degradation studies were carried out using phosphate buffer solution (PBS). Mechanical and morphological changes were also examined. A standard Fourier transform infrared spectral of 3433, 2909-2840, 1738, 1452, 1174, 1062, 706 cm-1 were assigned to OH group, C-H stretch, C=O vibration of ester, CH3 bending, alkyl ester and CH2 stretch, respectively. Tensile strength of knotted neat LDPE (4.84 MPa) exhibited 48.7% improvement in LDPE/PLA/CHS (60/39.5/0.5). This suggests that a good knot can be achieved to 40% weight fraction of PLA. The monofilament suture also demonstrated better antimicrobial property as the monofilament, LDPE/PLA/CHS (60/39.5/0.5) and LDPE/PLA/CHS (50/49.5/0.5) covered 12.7 mm zone of inhibition which is greater than the standard 1 mm. The suture's morphological phases show dark fibre-like rough surfaces with microstructural irregularities as PLA and CHS were added to the matrix, which is required for enhanced degradation. Thus, the partially absorbable suture produced in this study could serve as a suture for tendon repair.
Collapse
|
4
|
Mosaddad SA, Rasoolzade B, Namanloo RA, Azarpira N, Dortaj H. Stem cells and common biomaterials in dentistry: a review study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:55. [PMID: 35716227 PMCID: PMC9206624 DOI: 10.1007/s10856-022-06676-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Stem cells exist as normal cells in embryonic and adult tissues. In recent years, scientists have spared efforts to determine the role of stem cells in treating many diseases. Stem cells can self-regenerate and transform into some somatic cells. They would also have a special position in the future in various clinical fields, drug discovery, and other scientific research. Accordingly, the detection of safe and low-cost methods to obtain such cells is one of the main objectives of research. Jaw, face, and mouth tissues are the rich sources of stem cells, which more accessible than other stem cells, so stem cell and tissue engineering treatments in dentistry have received much clinical attention in recent years. This review study examines three essential elements of tissue engineering in dentistry and clinical practice, including stem cells derived from the intra- and extra-oral sources, growth factors, and scaffolds.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Boshra Rasoolzade
- Student Research Committee, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hengameh Dortaj
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Arifin N, Sudin I, Ngadiman NHA, Ishak MSA. A Comprehensive Review of Biopolymer Fabrication in Additive Manufacturing Processing for 3D-Tissue-Engineering Scaffolds. Polymers (Basel) 2022; 14:2119. [PMID: 35632000 PMCID: PMC9147259 DOI: 10.3390/polym14102119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/25/2023] Open
Abstract
The selection of a scaffold-fabrication method becomes challenging due to the variety in manufacturing methods, biomaterials and technical requirements. The design and development of tissue engineering scaffolds depend upon the porosity, which provides interconnected pores, suitable mechanical strength, and the internal scaffold architecture. The technology of the additive manufacturing (AM) method via photo-polymerization 3D printing is reported to have the capability to fabricate high resolution and finely controlled dimensions of a scaffold. This technology is also easy to operate, low cost and enables fast printing, compared to traditional methods and other additive manufacturing techniques. This article aims to review the potential of the photo-polymerization 3D-printing technique in the fabrication of tissue engineering scaffolds. This review paper also highlights the comprehensive comparative study between photo-polymerization 3D printing with other scaffold fabrication techniques. Various parameter settings that influence mechanical properties, biocompatibility and porosity behavior are also discussed in detail.
Collapse
Affiliation(s)
- Nurulhuda Arifin
- Quality Engineering, Malaysian Institute of Industrial Technology, Universiti Kuala Lumpur (UniKL), Persiaran Sinaran Ilmu, Bandar Seri Alam 81750, Johor, Malaysia;
| | - Izman Sudin
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Nor Hasrul Akhmal Ngadiman
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru 81310, Johor, Malaysia;
| | - Mohamad Shaiful Ashrul Ishak
- Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Kampus Pauh Putra, Arau 02600, Perlis, Malaysia;
| |
Collapse
|
6
|
Three-dimensional scaffolds for tissue bioengineering cartilages. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Morouço P, Fernandes C, Lattanzi W. Challenges and Innovations in Osteochondral Regeneration: Insights from Biology and Inputs from Bioengineering toward the Optimization of Tissue Engineering Strategies. J Funct Biomater 2021; 12:17. [PMID: 33673516 PMCID: PMC7931100 DOI: 10.3390/jfb12010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the extremely high incidence of lesions and diseases in aging population, it is critical to put all efforts into developing a successful implant for osteochondral tissue regeneration. Many of the patients undergoing surgery present osteochondral fissure extending until the subchondral bone (corresponding to a IV grade according to the conventional radiographic classification by Berndt and Harty). Therefore, strategies for functional tissue regeneration should also aim at healing the subchondral bone and joint interface, besides hyaline cartilage. With the ambition of contributing to solving this problem, several research groups have been working intensively on the development of tailored implants that could promote that complex osteochondral regeneration. These implants may be manufactured through a wide variety of processes and use a wide variety of (bio)materials. This review aimed to examine the state of the art regarding the challenges, advantages, and drawbacks of the current strategies for osteochondral regeneration. One of the most promising approaches relies on the principles of additive manufacturing, where technologies are used that allow for the production of complex 3D structures with a high level of control, intended and predefined geometry, size, and interconnected pores, in a reproducible way. However, not all materials are suitable for these processes, and their features should be examined, targeting a successful regeneration.
Collapse
Affiliation(s)
| | | | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
8
|
|
9
|
Gui N, Xu W, Myers DE, Shukla R, Tang HP, Qian M. The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomater Sci 2018; 6:250-264. [DOI: 10.1039/c7bm01016h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current understanding of the role of ordered and partially ordered surface topography in bone cell responses for bone implant design.
Collapse
Affiliation(s)
- N. Gui
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - W. Xu
- Department of Engineering
- Macquarie University
- Sydney
- Australia
| | - D. E. Myers
- Australian Institute for Musculoskeletal Science
- Victoria University and University of Melbourne
- Australia
- College of Health and Biomedicine
- Victoria University
| | - R. Shukla
- Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry
- School of Science
- RMIT University
- Melbourne
- Australia
| | - H. P. Tang
- State Key Laboratory of Porous Metal Materials
- Northwest Institute for Nonferrous Metal Research
- and Xi'an Sailong Metal Materials Co. Ltd
- Xi'an 710016
- China
| | - M. Qian
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
10
|
Vladescu A, Vranceanu DM, Kulesza S, Ivanov AN, Bramowicz M, Fedonnikov AS, Braic M, Norkin IA, Koptyug A, Kurtukova MO, Dinu M, Pana I, Surmeneva MA, Surmenev RA, Cotrut CM. Influence of the electrolyte's pH on the properties of electrochemically deposited hydroxyapatite coating on additively manufactured Ti64 alloy. Sci Rep 2017; 7:16819. [PMID: 29196637 PMCID: PMC5711918 DOI: 10.1038/s41598-017-16985-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023] Open
Abstract
Properties of the hydroxyapatite obtained by electrochemical assisted deposition (ED) are dependent on several factors including deposition temperature, electrolyte pH and concentrations, applied potential. All of these factors directly influence the morphology, stoichiometry, crystallinity, electrochemical behaviour, and particularly the coating thickness. Coating structure together with surface micro- and nano-scale topography significantly influence early stages of the implant bio-integration. The aim of this study is to analyse the effect of pH modification on the morphology, corrosion behaviour and in vitro bioactivity and in vivo biocompatibility of hydroxyapatite prepared by ED on the additively manufactured Ti64 samples. The coatings prepared in the electrolytes with pH = 6 have predominantly needle like morphology with the dimensions in the nanometric scale (~30 nm). Samples coated at pH = 6 demonstrated higher protection efficiency against the corrosive attack as compared to the ones coated at pH = 5 (~93% against 89%). The in vitro bioactivity results indicated that both coatings have a greater capacity of biomineralization, compared to the uncoated Ti64. Somehow, the coating deposited at pH = 6 exhibited good corrosion behaviour and high biomineralization ability. In vivo subcutaneous implantation of the coated samples into the white rats for up to 21 days with following histological studies showed no serious inflammatory process.
Collapse
Affiliation(s)
- Alina Vladescu
- National Institute for Optoelectronics, Department for Advanced Surface Processing and Analysis by Vacuum Technologies, 409 Atomistilor St., Magurele, RO77125, Romania.,National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk, 634050, Russia
| | - Diana M Vranceanu
- University Politehnica of Bucharest, 313 Spl. Independentei, Bucharest, RO60042, Romania
| | - Slawek Kulesza
- Warmia and Mazury University in Olsztyn, Department of Mathematics and Computer Science, Słoneczna 54, Olsztyn, 10-719, Poland
| | - Alexey N Ivanov
- Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery of Federal State Budgetary Educational Institution of Higher Education "V.I. Razumovsky Saratov State Medical University" of the Ministry of Healthcare of the Russian Federation, 148 Chernyshevskogo st., Saratov, 410012, Russia
| | - Mirosław Bramowicz
- Warmia and Mazury University in Olsztyn, Department of Mathematics and Computer Science, Słoneczna 54, Olsztyn, 10-719, Poland
| | - Alexander S Fedonnikov
- Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery of Federal State Budgetary Educational Institution of Higher Education "V.I. Razumovsky Saratov State Medical University" of the Ministry of Healthcare of the Russian Federation, 148 Chernyshevskogo st., Saratov, 410012, Russia
| | - Mariana Braic
- National Institute for Optoelectronics, Department for Advanced Surface Processing and Analysis by Vacuum Technologies, 409 Atomistilor St., Magurele, RO77125, Romania
| | - Igor A Norkin
- Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery of Federal State Budgetary Educational Institution of Higher Education "V.I. Razumovsky Saratov State Medical University" of the Ministry of Healthcare of the Russian Federation, 148 Chernyshevskogo st., Saratov, 410012, Russia
| | - Andrey Koptyug
- Additive Manufacturing Group, Sports Tech Research Centre, Mid Sweden University, Akademigatan 1, Östersund, 831 25, Sweden
| | - Maria O Kurtukova
- Department of Histology, Federal State Budgetary Educational Institution of Higher Education "V.I. Razumovsky Saratov State Medical University" of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachia st., Saratov, 410012, Russia
| | - Mihaela Dinu
- National Institute for Optoelectronics, Department for Advanced Surface Processing and Analysis by Vacuum Technologies, 409 Atomistilor St., Magurele, RO77125, Romania
| | - Iulian Pana
- National Institute for Optoelectronics, Department for Advanced Surface Processing and Analysis by Vacuum Technologies, 409 Atomistilor St., Magurele, RO77125, Romania
| | - Maria A Surmeneva
- National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk, 634050, Russia
| | - Roman A Surmenev
- National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk, 634050, Russia
| | - Cosmin M Cotrut
- University Politehnica of Bucharest, 313 Spl. Independentei, Bucharest, RO60042, Romania. .,National Research Tomsk Polytechnic University, Lenin Avenue 43, Tomsk, 634050, Russia.
| |
Collapse
|
11
|
Scaling-Up Techniques for the Nanofabrication of Cell Culture Substrates via Two-Photon Polymerization for Industrial-Scale Expansion of Stem Cells. MATERIALS 2017; 10:ma10010066. [PMID: 28772424 PMCID: PMC5344595 DOI: 10.3390/ma10010066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/28/2023]
Abstract
Stem-cell-based therapies require a high number (106–109) of cells, therefore in vitro expansion is needed because of the initially low amount of stem cells obtainable from human tissues. Standard protocols for stem cell expansion are currently based on chemically-defined culture media and animal-derived feeder-cell layers, which expose cells to additives and to xenogeneic compounds, resulting in potential issues when used in clinics. The two-photon laser polymerization technique enables three-dimensional micro-structures to be fabricated, which we named synthetic nichoids. Here we review our activity on the technological improvements in manufacturing biomimetic synthetic nichoids and, in particular on the optimization of the laser-material interaction to increase the patterned area and the percentage of cell culture surface covered by such synthetic nichoids, from a low initial value of 10% up to 88% with an optimized micromachining time. These results establish two-photon laser polymerization as a promising tool to fabricate substrates for stem cell expansion, without any chemical supplement and in feeder-free conditions for potential therapeutic uses.
Collapse
|
12
|
Silvestri A, Boffito M, Sartori S, Ciardelli G. Biomimetic Materials and Scaffolds for Myocardial Tissue Regeneration. Macromol Biosci 2013; 13:984-1019. [DOI: 10.1002/mabi.201200483] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/23/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Antonella Silvestri
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Turin Italy
- CNR-IPCF UOS Pisa; Via Moruzzi 1 56124 Pisa Italy
| |
Collapse
|