1
|
Parodi A, Miao J, Soond SM, Rudzińska M, Zamyatnin AA. Albumin Nanovectors in Cancer Therapy and Imaging. Biomolecules 2019; 9:E218. [PMID: 31195727 PMCID: PMC6627831 DOI: 10.3390/biom9060218] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Albumin nanovectors represent one of the most promising carriers recently generated because of the cost-effectiveness of their fabrication, biocompatibility, safety, and versatility in delivering hydrophilic and hydrophobic therapeutics and diagnostic agents. In this review, we describe and discuss the recent advances in how this technology has been harnessed for drug delivery in cancer, evaluating the commonly used synthesis protocols and considering the key factors that determine the biological transport and the effectiveness of such technology. With this in mind, we highlight how clinical and experimental albumin-based delivery nanoplatforms may be designed for tackling tumor progression or improving the currently established diagnostic procedures.
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Jiaxing Miao
- Ohio State University, 410 W 10th Ave. Columbus, 43210, Ohio, USA.
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
2
|
Cydzik M, Abdul-Wahid A, Park S, Bourdeau A, Bowden K, Prodeus A, Kollara A, Brown TJ, Ringuette MJ, Gariépy J. Slow binding kinetics of secreted protein, acidic, rich in cysteine-VEGF interaction limit VEGF activation of VEGF receptor 2 and attenuate angiogenesis. FASEB J 2015; 29:3493-505. [PMID: 25921830 DOI: 10.1096/fj.15-271775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 12/22/2022]
Abstract
VEGF-A (VEGF) drives angiogenesis through activation of downstream effectors to promote endothelial cell proliferation and migration. Although VEGF binds both VEGF receptor 1 (R1) and receptor 2 (R2), its proangiogenic effects are attributed to R2. Secreted protein, acidic, rich in cysteine (SPARC) is a matricellular glycoprotein thought to inhibit angiogenesis by preventing VEGF from activating R1, but not R2. Because R2 rather than R1 mediates proangiogenic activities of VEGF, the role of human SPARC in angiogenesis was reevaluated. We confirm that association of SPARC with VEGF inhibits VEGF-induced HUVEC adherence, motility, and proliferation in vitro and blocks VEGF-induced blood vessel formation ex vivo. SPARC decreases VEGF-induced phosphorylation of R2 and downstream effectors ERK, Akt, and p38 MAPK as shown by Western blot and/or phosphoflow analysis. Surface plasmon resonance indicates that SPARC binds slowly to VEGF (0.865 ± 0.02 × 10(4) M(-1) s(-1)) with a Kd of 150 nM, forming a stable complex that dissociates slowly (1.26 ± 0.003 × 10(-3) s(-1)). Only domain III of SPARC binds VEGF, exhibiting a 15-fold higher affinity than full-length SPARC. These findings support a model whereby SPARC regulates angiogenesis by sequestering VEGF, thus restricting the activation of R2 and the subsequent activation of downstream targets critical for endothelial cell functions.
Collapse
Affiliation(s)
- Marzena Cydzik
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Aws Abdul-Wahid
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Soyeon Park
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Annie Bourdeau
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Katherine Bowden
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Aaron Prodeus
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Alexandra Kollara
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Theodore J Brown
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Maurice J Ringuette
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jean Gariépy
- *Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics and Pharmaceutical Sciences, Department of Cell & Systems Biology, Department of Immunology, and Department of Obstetrics and Gynecology, University of Toronto, Ontario, Canada; and Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| |
Collapse
|