1
|
Tax CMW, Kleban E, Chamberland M, Baraković M, Rudrapatna U, Jones DK. Measuring compartmental T 2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T 2 correlation MRI. Neuroimage 2021; 236:117967. [PMID: 33845062 PMCID: PMC8270891 DOI: 10.1016/j.neuroimage.2021.117967] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
The anisotropy of brain white matter microstructure manifests itself in orientational-dependence of various MRI contrasts, and can result in significant quantification biases if ignored. Understanding the origins of this orientation-dependence could enhance the interpretation of MRI signal changes in development, ageing and disease and ultimately improve clinical diagnosis. Using a novel experimental setup, this work studies the contributions of the intra- and extra-axonal water to the orientation-dependence of one of the most clinically-studied parameters, apparent transverse relaxation T2. Specifically, a tiltable receive coil is interfaced with an ultra-strong gradient MRI scanner to acquire multidimensional MRI data with an unprecedented range of acquisition parameters. Using this setup, compartmental T2 can be disentangled based on differences in diffusional-anisotropy, and its orientation-dependence further elucidated by re-orienting the head with respect to the main magnetic field B→0. A dependence of (compartmental) T2 on the fibre orientation w.r.t. B→0 was observed, and further quantified using characteristic representations for susceptibility- and magic angle effects. Across white matter, anisotropy effects were dominated by the extra-axonal water signal, while the intra-axonal water signal decay varied less with fibre-orientation. Moreover, the results suggest that the stronger extra-axonal T2 orientation-dependence is dominated by magnetic susceptibility effects (presumably from the myelin sheath) while the weaker intra-axonal T2 orientation-dependence may be driven by a combination of microstructural effects. Even though the current design of the tiltable coil only offers a modest range of angles, the results demonstrate an overall effect of tilt and serve as a proof-of-concept motivating further hardware development to facilitate experiments that explore orientational anisotropy. These observations have the potential to lead to white matter microstructural models with increased compartmental sensitivity to disease, and can have direct consequences for longitudinal and group-wise T2- and diffusion-MRI data analysis, where the effect of head-orientation in the scanner is commonly ignored.
Collapse
Affiliation(s)
- Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK; University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Muhamed Baraković
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Signal Processing Laboratory 5, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, University Hospital Basel, Basel, Switzerland
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
2
|
Cercignani M, Bouyagoub S. Brain microstructure by multi-modal MRI: Is the whole greater than the sum of its parts? Neuroimage 2017; 182:117-127. [PMID: 29097317 DOI: 10.1016/j.neuroimage.2017.10.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022] Open
Abstract
The MRI signal is dependent upon a number of sub-voxel properties of tissue, which makes it potentially able to detect changes occurring at a scale much smaller than the image resolution. This "microstructural imaging" has become one of the main branches of quantitative MRI. Despite the exciting promise of unique insight beyond the resolution of the acquired images, its widespread application is limited by the relatively modest ability of each microstructural imaging technique to distinguish between differing microscopic substrates. This is mainly due to the fact that MRI provides a very indirect measure of the tissue properties in which we are interested. A strategy to overcome this limitation lies in the combination of more than one technique, to exploit the relative contributions of differing physiological and pathological substrates to selected MRI contrasts. This forms the basis of multi-modal MRI, a broad concept that refers to many different ways of effectively combining information from more than one MRI contrast. This paper will review a range of methods that have been proposed to maximise the output of this combination, primarily falling into one of two approaches. The first one relies on data-driven methods, exploiting multivariate analysis tools able to capture overlapping and complementary information. The second approach, which we call "model-driven", aims at combining parameters extracted by existing biophysical or signal models to obtain new parameters, which are believed to be more accurate or more specific than the original ones. This paper will attempt to provide an overview of the advantages and limitations of these two philosophies.
Collapse
Affiliation(s)
- Mara Cercignani
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RR, Brighton, East Sussex, UK; Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy.
| | - Samira Bouyagoub
- Clinical Imaging Sciences Centre, Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RR, Brighton, East Sussex, UK
| |
Collapse
|