1
|
Ahmed F, Dehzangi I, Hasan MM, Shatabda S. Accurately predicting microbial phosphorylation sites using evolutionary and structural features. Gene 2023; 851:146993. [DOI: 10.1016/j.gene.2022.146993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
2
|
Bankapur S, Patil N. An Enhanced Protein Fold Recognition for Low Similarity Datasets Using Convolutional and Skip-Gram Features With Deep Neural Network. IEEE Trans Nanobioscience 2020; 20:42-49. [PMID: 32894720 DOI: 10.1109/tnb.2020.3022456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The protein fold recognition is one of the important tasks of structural biology, which helps in addressing further challenges like predicting the protein tertiary structures and its functions. Many machine learning works are published to identify the protein folds effectively. However, very few works have reported the fold recognition accuracy above 80% on benchmark datasets. In this study, an effective set of global and local features are extracted from the proposed Convolutional (Conv) and SkipXGram bi-gram (SXGbg) techniques, and the fold recognition is performed using the proposed deep neural network. The performance of the proposed model reported 91.4% fold accuracy on one of the derived low similarity (< 25%) datasets of latest extended version of SCOPe_2.07. The proposed model is further evaluated on three popular and publicly available benchmark datasets such as DD, EDD, and TG and obtained 85.9%, 95.8%, and 88.8% fold accuracies, respectively. This work is first to report fold recognition accuracy above 85% on all the benchmark datasets. The performance of the proposed model has outperformed the best state-of-the-art models by 5% to 23% on DD, 2% to 19% on EDD, and 3% to 30% on TG dataset.
Collapse
|
3
|
Arafat ME, Ahmad MW, Shovan S, Dehzangi A, Dipta SR, Hasan MAM, Taherzadeh G, Shatabda S, Sharma A. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features. Genes (Basel) 2020; 11:E1023. [PMID: 32878321 PMCID: PMC7565944 DOI: 10.3390/genes11091023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Post Translational Modification (PTM) is defined as the alteration of protein sequence upon interaction with different macromolecules after the translation process. Glutarylation is considered one of the most important PTMs, which is associated with a wide range of cellular functioning, including metabolism, translation, and specified separate subcellular localizations. During the past few years, a wide range of computational approaches has been proposed to predict Glutarylation sites. However, despite all the efforts that have been made so far, the prediction performance of the Glutarylation sites has remained limited. One of the main challenges to tackle this problem is to extract features with significant discriminatory information. To address this issue, we propose a new machine learning method called BiPepGlut using the concept of a bi-peptide-based evolutionary method for feature extraction. To build this model, we also use the Extra-Trees (ET) classifier for the classification purpose, which, to the best of our knowledge, has never been used for this task. Our results demonstrate BiPepGlut is able to significantly outperform previously proposed models to tackle this problem. BiPepGlut achieves 92.0%, 84.8%, 95.6%, 0.82, and 0.88 in accuracy, sensitivity, specificity, Matthew's Correlation Coefficient, and F1-score, respectively. BiPepGlut is implemented as a publicly available online predictor.
Collapse
Affiliation(s)
- Md. Easin Arafat
- Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh; (M.E.A.); (M.W.A.); (S.R.D.)
| | - Md. Wakil Ahmad
- Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh; (M.E.A.); (M.W.A.); (S.R.D.)
| | - S.M. Shovan
- Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (S.M.S.); (M.A.M.H.)
| | - Abdollah Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ 08102, USA;
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Shubhashis Roy Dipta
- Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh; (M.E.A.); (M.W.A.); (S.R.D.)
| | - Md. Al Mehedi Hasan
- Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (S.M.S.); (M.A.M.H.)
| | - Ghazaleh Taherzadeh
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Swakkhar Shatabda
- Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh; (M.E.A.); (M.W.A.); (S.R.D.)
| | - Alok Sharma
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD 4111, Australia
- Department of Medical Science Mathematics, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, Suva, Fiji
| |
Collapse
|
4
|
AHMAD WAKIL, ARAFAT EASIN, TAHERZADEH GHAZALEH, SHARMA ALOK, DIPTA SHUBHASHISROY, DEHZANGI ABDOLLAH, SHATABDA SWAKKHAR. Mal-Light: Enhancing Lysine Malonylation Sites Prediction Problem Using Evolutionary-based Features. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:77888-77902. [PMID: 33354488 PMCID: PMC7751949 DOI: 10.1109/access.2020.2989713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Post Translational Modification (PTM) is considered an important biological process with a tremendous impact on the function of proteins in both eukaryotes, and prokaryotes cells. During the past decades, a wide range of PTMs has been identified. Among them, malonylation is a recently identified PTM which plays a vital role in a wide range of biological interactions. Notwithstanding, this modification plays a potential role in energy metabolism in different species including Homo Sapiens. The identification of PTM sites using experimental methods is time-consuming and costly. Hence, there is a demand for introducing fast and cost-effective computational methods. In this study, we propose a new machine learning method, called Mal-Light, to address this problem. To build this model, we extract local evolutionary-based information according to the interaction of neighboring amino acids using a bi-peptide based method. We then use Light Gradient Boosting (LightGBM) as our classifier to predict malonylation sites. Our results demonstrate that Mal-Light is able to significantly improve malonylation site prediction performance compared to previous studies found in the literature. Using Mal-Light we achieve Matthew's correlation coefficient (MCC) of 0.74 and 0.60, Accuracy of 86.66% and 79.51%, Sensitivity of 78.26% and 67.27%, and Specificity of 95.05% and 91.75%, for Homo Sapiens and Mus Musculus proteins, respectively. Mal-Light is implemented as an online predictor which is publicly available at: (http://brl.uiu.ac.bd/MalLight/).
Collapse
Affiliation(s)
- WAKIL AHMAD
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| | - EASIN ARAFAT
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| | - GHAZALEH TAHERZADEH
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| | - ALOK SHARMA
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD-4111, Australia
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Kanagawa, Japan
- School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, Suva, Fiji
- CREST, JST, Tokyo, 102-8666, Japan
| | - SHUBHASHIS ROY DIPTA
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| | - ABDOLLAH DEHZANGI
- Department of Computer Science, Morgan State University, Baltimore, MD, 21251, USA
| | - SWAKKHAR SHATABDA
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Dhaka 1212, Bangladesh
| |
Collapse
|
5
|
Basith S, Manavalan B, Hwan Shin T, Lee G. Machine intelligence in peptide therapeutics: A next‐generation tool for rapid disease screening. Med Res Rev 2020; 40:1276-1314. [DOI: 10.1002/med.21658] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shaherin Basith
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| | | | - Tae Hwan Shin
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| | - Gwang Lee
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| |
Collapse
|
6
|
Chandra AA, Sharma A, Dehzangi A, Tsunoda T. EvolStruct-Phogly: incorporating structural properties and evolutionary information from profile bigrams for the phosphoglycerylation prediction. BMC Genomics 2019; 19:984. [PMID: 30999859 PMCID: PMC7402405 DOI: 10.1186/s12864-018-5383-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
Background Post-translational modification (PTM), which is a biological process, tends to modify proteome that leads to changes in normal cell biology and pathogenesis. In the recent times, there has been many reported PTMs. Out of the many modifications, phosphoglycerylation has become particularly the subject of interest. The experimental procedure for identification of phosphoglycerylated residues continues to be an expensive, inefficient and time-consuming effort, even with a large number of proteins that are sequenced in the post-genomic period. Computational methods are therefore being anticipated in order to effectively predict phosphoglycerylated lysines. Even though there are predictors available, the ability to detect phosphoglycerylated lysine residues still remains inadequate. Results We have introduced a new predictor in this paper named EvolStruct-Phogly that uses structural and evolutionary information relating to amino acids to predict phosphoglycerylated lysine residues. Benchmarked data is employed containing experimentally identified phosphoglycerylated and non-phosphoglycerylated lysines. We have then extracted the three structural information which are accessible surface area of amino acids, backbone torsion angles, amino acid’s local structure conformations and profile bigrams of position-specific scoring matrices. Conclusion EvolStruct-Phogly showed a noteworthy improvement in regards to the performance when compared with the previous predictors. The performance metrics obtained are as follows: sensitivity 0.7744, specificity 0.8533, precision 0.7368, accuracy 0.8275, and Mathews correlation coefficient of 0.6242. The software package and data of this work can be obtained from https://github.com/abelavit/EvolStruct-Phogly or www.alok-ai-lab.com
Collapse
Affiliation(s)
| | - Alok Sharma
- School of Engineering & Physics, University of the South Pacific, Suva, Fiji. .,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. .,Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia. .,CREST, JST, Tokyo, Japan.
| | - Abdollah Dehzangi
- Department of Computer Science, Morgan State University, Baltimore, MD, USA
| | - Tatushiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,CREST, JST, Tokyo, Japan.,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Sudha P, Ramyachitra D, Manikandan P. Enhanced Artificial Neural Network for Protein Fold Recognition and Structural Class Prediction. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
iDNAProt-ES: Identification of DNA-binding Proteins Using Evolutionary and Structural Features. Sci Rep 2017; 7:14938. [PMID: 29097781 PMCID: PMC5668250 DOI: 10.1038/s41598-017-14945-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/19/2017] [Indexed: 11/12/2022] Open
Abstract
DNA-binding proteins play a very important role in the structural composition of the DNA. In addition, they regulate and effect various cellular processes like transcription, DNA replication, DNA recombination, repair and modification. The experimental methods used to identify DNA-binding proteins are expensive and time consuming and thus attracted researchers from computational field to address the problem. In this paper, we present iDNAProt-ES, a DNA-binding protein prediction method that utilizes both sequence based evolutionary and structure based features of proteins to identify their DNA-binding functionality. We used recursive feature elimination to extract an optimal set of features and train them using Support Vector Machine (SVM) with linear kernel to select the final model. Our proposed method significantly outperforms the existing state-of-the-art predictors on standard benchmark dataset. The accuracy of the predictor is 90.18% using jack knife test and 88.87% using 10-fold cross validation on the benchmark dataset. The accuracy of the predictor on the independent dataset is 80.64% which is also significantly better than the state-of-the-art methods. iDNAProt-ES is a novel prediction method that uses evolutionary and structural based features. We believe the superior performance of iDNAProt-ES will motivate the researchers to use this method to identify DNA-binding proteins. iDNAProt-ES is publicly available as a web server at: http://brl.uiu.ac.bd/iDNAProt-ES/.
Collapse
|
9
|
Lyons J, Paliwal KK, Dehzangi A, Heffernan R, Tsunoda T, Sharma A. Protein fold recognition using HMM–HMM alignment and dynamic programming. J Theor Biol 2016; 393:67-74. [DOI: 10.1016/j.jtbi.2015.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
10
|
Saini H, Raicar G, Sharma A, Lal S, Dehzangi A, Lyons J, Paliwal KK, Imoto S, Miyano S. Probabilistic expression of spatially varied amino acid dimers into general form of Chou׳s pseudo amino acid composition for protein fold recognition. J Theor Biol 2015; 380:291-8. [PMID: 26079221 DOI: 10.1016/j.jtbi.2015.05.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Identification of the tertiary structure (3D structure) of a protein is a fundamental problem in biology which helps in identifying its functions. Predicting a protein׳s fold is considered to be an intermediate step for identifying the tertiary structure of a protein. Computational methods have been applied to determine a protein׳s fold by assembling information from its structural, physicochemical and/or evolutionary properties. METHODS In this study, we propose a scheme in which a feature extraction technique that extracts probabilistic expressions of amino acid dimers, which have varying degree of spatial separation in the primary sequences of proteins, from the Position Specific Scoring Matrix (PSSM). SVM classifier is used to create a model from extracted features for fold recognition. RESULTS The performance of the proposed scheme is evaluated against three benchmarked datasets, namely the Ding and Dubchak, Extended Ding and Dubchak, and Taguchi and Gromiha datasets. CONCLUSIONS The proposed scheme performed well in the experiments conducted, providing improvements over previously published results in literature.
Collapse
Affiliation(s)
| | | | - Alok Sharma
- University of the South Pacific, Fiji; Griffith University, Brisbane, Australia.
| | - Sunil Lal
- University of the South Pacific, Fiji.
| | | | | | | | - Seiya Imoto
- Human Genome Center, University of Tokyo, Japan.
| | | |
Collapse
|
11
|
Dehzangi A, Sohrabi S, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A. Gram-positive and Gram-negative subcellular localization using rotation forest and physicochemical-based features. BMC Bioinformatics 2015; 16 Suppl 4:S1. [PMID: 25734546 PMCID: PMC4347615 DOI: 10.1186/1471-2105-16-s4-s1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The functioning of a protein relies on its location in the cell. Therefore, predicting protein subcellular localization is an important step towards protein function prediction. Recent studies have shown that relying on Gene Ontology (GO) for feature extraction can improve the prediction performance. However, for newly sequenced proteins, the GO is not available. Therefore, for these cases, the prediction performance of GO based methods degrade significantly. Results In this study, we develop a method to effectively employ physicochemical and evolutionary-based information in the protein sequence. To do this, we propose segmentation based feature extraction method to explore potential discriminatory information based on physicochemical properties of the amino acids to tackle Gram-positive and Gram-negative subcellular localization. We explore our proposed feature extraction techniques using 10 attributes that have been experimentally selected among a wide range of physicochemical attributes. Finally by applying the Rotation Forest classification technique to our extracted features, we enhance Gram-positive and Gram-negative subcellular localization accuracies up to 3.4% better than previous studies which used GO for feature extraction. Conclusion By proposing segmentation based feature extraction method to explore potential discriminatory information based on physicochemical properties of the amino acids as well as using Rotation Forest classification technique, we are able to enhance the Gram-positive and Gram-negative subcellular localization prediction accuracies, significantly.
Collapse
|
12
|
Paliwal KK, Sharma A, Lyons J, Dehzangi A. Improving protein fold recognition using the amalgamation of evolutionary-based and structural based information. BMC Bioinformatics 2014; 15 Suppl 16:S12. [PMID: 25521502 PMCID: PMC4290640 DOI: 10.1186/1471-2105-15-s16-s12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Deciphering three dimensional structure of a protein sequence is a challenging task in biological science. Protein fold recognition and protein secondary structure prediction are transitional steps in identifying the three dimensional structure of a protein. For protein fold recognition, evolutionary-based information of amino acid sequences from the position specific scoring matrix (PSSM) has been recently applied with improved results. On the other hand, the SPINE-X predictor has been developed and applied for protein secondary structure prediction. Several reported methods for protein fold recognition have only limited accuracy. In this paper, we have developed a strategy of combining evolutionary-based information (from PSSM) and predicted secondary structure using SPINE-X to improve protein fold recognition. The strategy is based on finding the probabilities of amino acid pairs (AAP). The proposed method has been tested on several protein benchmark datasets and an improvement of 8.9% recognition accuracy has been achieved. We have achieved, for the first time over 90% and 75% prediction accuracies for sequence similarity values below 40% and 25%, respectively. We also obtain 90.6% and 77.0% prediction accuracies, respectively, for the Extended Ding and Dubchak and Taguchi and Gromiha benchmark protein fold recognition datasets widely used for in the literature.
Collapse
|
13
|
Paliwal KK, Sharma A, Lyons J, Dehzangi A. A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition. IEEE Trans Nanobioscience 2014; 13:44-50. [PMID: 24594513 DOI: 10.1109/tnb.2013.2296050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In biological sciences, the deciphering of a three dimensional structure of a protein sequence is considered to be an important and challenging task. The identification of protein folds from primary protein sequences is an intermediate step in discovering the three dimensional structure of a protein. This can be done by utilizing feature extraction technique to accurately extract all the relevant information followed by employing a suitable classifier to label an unknown protein. In the past, several feature extraction techniques have been developed but with limited recognition accuracy only. In this study, we have developed a feature extraction technique based on tri-grams computed directly from Position Specific Scoring Matrices. The effectiveness of the feature extraction technique has been shown on two benchmark datasets. The proposed technique exhibits up to 4.4% improvement in protein fold recognition accuracy compared to the state-of-the-art feature extraction techniques.
Collapse
|
14
|
Dehzangi A, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳s general PseAAC. J Theor Biol 2014; 364:284-94. [PMID: 25264267 DOI: 10.1016/j.jtbi.2014.09.029] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/11/2014] [Accepted: 09/17/2014] [Indexed: 11/17/2022]
Abstract
Protein subcellular localization is defined as predicting the functioning location of a given protein in the cell. It is considered an important step towards protein function prediction and drug design. Recent studies have shown that relying on Gene Ontology (GO) for feature extraction can improve protein subcellular localization prediction performance. However, relying solely on GO, this problem remains unsolved. At the same time, the impact of other sources of features especially evolutionary-based features has not been explored adequately for this task. In this study, we aim to extract discriminative evolutionary features to tackle this problem. To do this, we propose two segmentation based feature extraction methods to explore potential local evolutionary-based information for Gram-positive and Gram-negative subcellular localizations. We will show that by applying a Support Vector Machine (SVM) classifier to our extracted features, we are able to enhance Gram-positive and Gram-negative subcellular localization prediction accuracies by up to 6.4% better than previous studies including the studies that used GO for feature extraction.
Collapse
Affiliation(s)
- Abdollah Dehzangi
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia; National ICT Australia (NICTA), Brisbane, Australia.
| | - Rhys Heffernan
- School of Engineering, Griffith University, Brisbane, Australia
| | - Alok Sharma
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia; School of Engineering and Physics, University of the South Pacific, Fiji
| | - James Lyons
- School of Engineering, Griffith University, Brisbane, Australia
| | - Kuldip Paliwal
- School of Engineering, Griffith University, Brisbane, Australia
| | - Abdul Sattar
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia; National ICT Australia (NICTA), Brisbane, Australia
| |
Collapse
|
15
|
Lyons J, Biswas N, Sharma A, Dehzangi A, Paliwal KK. Protein fold recognition by alignment of amino acid residues using kernelized dynamic time warping. J Theor Biol 2014; 354:137-45. [DOI: 10.1016/j.jtbi.2014.03.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 01/21/2023]
|
16
|
Dehzangi A, Paliwal K, Lyons J, Sharma A, Sattar A. A Segmentation-Based Method to Extract Structural and Evolutionary Features for Protein Fold Recognition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:510-519. [PMID: 26356019 DOI: 10.1109/tcbb.2013.2296317] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein fold recognition (PFR) is considered as an important step towards the protein structure prediction problem. Despite all the efforts that have been made so far, finding an accurate and fast computational approach to solve the PFR still remains a challenging problem for bioinformatics and computational biology. In this study, we propose the concept of segmented-based feature extraction technique to provide local evolutionary information embedded in position specific scoring matrix (PSSM) and structural information embedded in the predicted secondary structure of proteins using SPINE-X. We also employ the concept of occurrence feature to extract global discriminatory information from PSSM and SPINE-X. By applying a support vector machine (SVM) to our extracted features, we enhance the protein fold prediction accuracy for 7.4 percent over the best results reported in the literature. We also report 73.8 percent prediction accuracy for a data set consisting of proteins with less than 25 percent sequence similarity rates and 80.7 percent prediction accuracy for a data set with proteins belonging to 110 folds with less than 40 percent sequence similarity rates. We also investigate the relation between the number of folds and the number of features being used and show that the number of features should be increased to get better protein fold prediction results when the number of folds is relatively large.
Collapse
|